Paolo Varagnolo Ingegneria — info@studioingegneriavaragnolo.com

3-D Beam Finite Element Programming - A Practical Guide
Part 2 — Dynamic Modal Analysis
(Software Included)

July 2024

Paolo Varagnolo: freelance engineer - Italy, info@studioingegneriavaragnolo.com

Private Practice

mailto:info@studioingegneriavaragnolo.com
mailto:info@studioingegneriavaragnolo.com

Contents

1 Introduction

2 Eigenvalues and eigenvectors solution
2.1 Storage scheme of the global stiffness and mass matrices
2.2 Consistent and lumped mass matrix

2.3 Examples of the Subspace Iteration Method
3 Modal participation factors and participating masses
4 Definition of the response spectrum

5 Calculation of seismic forces
5.1 SRSS combination
5.2 CQC combination
5.3 Displacements methods in RSA
54 Forces method in RSA

6 Calculation Examples
6.1 Example 1 — Antennas Pole 1
6.2 Example 2 — PM3
6.3 Example 3 — Participant Masses 1

6.4 Example 4 - PM_M1
7 Final Remarks
8 Bibliography

9 Appendix A — Program Sspace
9.1 Global scope variables

9.2 Other Subroutines

10 Appendix B — Program MdFem
10.1 Input data
10.2 Global scope variables
10.3 |Inizializations and array dimensioning

10.4 Other Subroutines

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

A 1 A W

10

18

18
19
20
21
24

25
26
29
31
35

38

39

40
41
41

59
60
62
62
63

1 Introduction

After having presented the static analysis features of the finite element program MdFem (Mono
dimensional Finite Element Method) in [9], in this paper one type of dynamic analysis is described.
As for the static analysis, here too the main reference is the procedures described by K. J. Bathe in
[1].

The programming language of MdFem is vb.net by Microsoft, instead of FORTRAN as in [1].

The purpose of this work is to provide a perfectly working program, with some practical tips on the
adopted techniques, with detailed, step by step explanations of some examples. The aim is to
provide a contribution to those who want to approach the finite element method (FEM), from the
programmer point of view.

The theoretical and mathematical framework will not be addressed, since it is already widely
available in many books and papers.

The MdFem program implements a 3-D Beam element. It is a straight, 2 nodes element: at each
node there are 3 translational and 3 rotational degrees of freedom (dof). This element is capable of
transmitting axial and shear forces, along with torque and bending moments.

There are two main approaches in dynamic analysis: 1) Modal Response Spectrum Analysis; 2)
Direct step by step Integration. Both methods are contemplated by European normative [7], but
the first is simpler and mostly used, therefore this is the method described below.
Modal Response Spectrum Analysis implies the following steps:

1) eigenvalues and eigenvectors solution;

2) modal participation factors and participating masses calculation;

3) definition of the response spectrum (spectra);

4) calculation of seismic forces from spectrum accelerations.

In the following, the four topics will be described.

2 Eigenvalues and eigenvectors solution

The method used in this paper is the Subspace Iteration Method, developed by K. J. Bathe and fully
described in [1]. The original program published in [1] has been translated in vb.net language: the
routines involved in the method have been first tested with some examples, and then they have
been added to the static program published in [9].

“The basic objective of the subspace iteration method is to solve for the lowest p eigenvalues and
corresponding eigenvectors satisfying”

where:

[K] is the global stiffness matrix of the structure (here stored in compacted form);
[¢b] is the matrix containing the eigenvectors [¢1, , cl)p];

[M] is the mass matrix (also stored in compacted form);

[A] is a diagonal matrix containing the eigenvalues A4, Ay

The storage of matrices in compacted form has been explained in [9] but is briefly showed in the
next sub section.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 3

For the structural problems considered in this article the eigenvalues A; are the free vibration

frequencies squared, a)l-z. The following expressions therefore apply:

- circular frequencies w; = \/A_L (rad/s)
- natural frequencies v; = w;/(2m)
- periods T; =1/v;

2.1 Storage scheme of the global stiffness and mass matrices

The global stiffness matrix [K] and the mass matrix [M] of the structure are stored in compacted
form with the active columns scheme as described in [1]. Only the part of the matrix below the
skyline and including the diagonal is stored in a one-dimensional array [A4] for the stiffness matrix
and [B] for the mass matrix. In order to know the addresses of the [K], [M] elements in [A4], [B],
the positions of the diagonal elements are stored in the array MAXAD(), and the number of non-
zero elements above the diagonal element is stored in the array MCOLH(). The following figure

shows the storage scheme of the global mass matrix in the array [B].
skyline

My Mz | 0 |my| O 0 0 0

Myy | Myg | Myg 0 0

Mgz | Mgs [O

symmetric m;;

example of the mass matrix of the structure
B(21) stores Mg

B(1) | B(3) B(9)

B(2) | B(5) | B(8)

B(4) | B(7) B(13)

B(8) |B(11) | B(14)

o B(10) | B(13) MAXAD = | 10 MCOLH =
B(12) | B(17) | B(20) 12
B(16) | B(19) 16
B(18) 13
B storage of [M] inthe array [B] - 22

In the program MdFem the total number of degrees of freedom of the structure in called NDOFT,
while the total number of elements below the skyline is called NKGLO for the stiffness matrix and

NMGLO for the mass matrix.

In the MdFem program, array [A4] is called GLOBK(NKGLO) and array [B] is called GLOBM(NMGLO).

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

4

2.2 Consistent and lumped mass matrix

To represent the mass distribution of a structure in a finite element model, the mass of an element
is proportionally applied to its nodes. There are two methods to convert the element mass into a
matrix referred to the degrees of freedom of the nodes: the mass matrix can be consistent or

lumped.

Consistent mass matrix

The consistent mass matrix M, of an element is calculated with the same shape functions used for

the calculation of the stiffness matrix, with the expression:

M, = [INITp N av
Ve

where:

[N] = element shape function matrix
p = material mass density

Ve = element volume

The program MdFem uses the following closed form expression provided by Katsikadelis in [6].

mj; - My
M. [ka mkk]
where:
140 0 0 0 0 0
0 156 0 0 0 22L
_m,| 0 0 156 0 -22L 0
Miji=220l 0 o0 0 14012 0 0
0 0 -—-22L 0 412 0
lo 220 o0 0 o ar2]
140 0 0 0 0 0
0 156 0 0 0 —22L
me | 0 0 156 0 22L O
Mk = 250| 0 0 0 14012 0 0
0 0 22 0 42 0
0 —-22L O 0 0 412
70 0 0 0 0 0
0 54 0 0 0 13L
M| 0 0 54 0 —13L 0
ki = 420] 0 0 0 70r¢ 0 0
0 0 13L. 0 =312 0
0 —13L 0 0 0 —312
M = (mkj)T
Where:

m, = pAL is the total mass of element e;

16 = +/Jr0/A is the radius of gyration of the cross-section;

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

Lumped mass matrix

The lumped mass matrix is simpler: in this approach the mass is lumped equally onto the nodes,
and is associated only to the translational degrees of freedom. The diagonal elements of the mass
matrix related to the translational degrees of freedom are the reactions of a simply supported
beam.

The lumped mass matrix is:

m; 0 0 0 0 0
0 my 0O 0 0 O
m.o=|0 0 m 0 0 0
7o 0o 0 0 0 O
0 0 0 0 0 O
L0 0 0 0 0 O
m, 0 0 0 0 0
0 my, 0 0 0 O
mkk:00mzooo
0 0 0 00O
0 0 0 00O
-000000J

mjk = mkj =0
Where:
my = m, = pAL / 2 = half of the element mass

2.3 Examples of the Subspace Iteration Method

The program Sspace from [1], translated in vb.net language, is listed in Appendix A. In the following
some examples are presented, in order to verify the correctness of the new implementation.

Example 12.1 from “Finite Element Procedures in Engineering Analysis” [1]
The data reported in the reference are:

2 -1 0 05 0 O
-1 4 -1 M={0 1 O

0 -1 2

K =

The input data for the program are listed below.

TITLE: example 12.1 Bathe global stiffness matrix in compacted form
NDOFT 2.0E+00

3 L .QE+00
NKGLO -1.0E+00

5 2.0E+00
NMGLO -1.0E+00

3 global mass matrix in compacted form
NROOT 0.5E+00

2 1.0E+00
MAXAD 0.5E+00

1

2

il

6

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 6

The following table shows the results published in [1], calculated by hand with 9 iterations, and

those calculated by the program Sspace().

Eigenvalues Eigenvectors
[1] Sspace [1] Sspace [1] Sspace
2 2 0.7057 0.70711 1.001 1.0
4 4 0.7071 0.70711 0.001 3.77E-15
0.7085 0.70711 -0.999 -1.0

Example 12.3 from “Finite Element Procedures in Engineering Analysis” [1]

The data reported in the reference are:

-1 0 0 0 0 0 O
-1 2 -1 0 0 2 0 O
K -1 2 -1 M 0 0 0 O
0 -1 1 0 0 0 1
The input data for the program are listed below.
TITLE: example 12.3 Bathe global stiffness matrix in compacted form
NDOFN 2.0E+00
4 2.0E+00
NKGLO -1.0E+00
7 2.0E+00
NMGLO -1.0E+00
4 1.0E+00
NROOT -1.0E+00
2 global mass matrix in compacted form
MAXAD 0.0E+00
1 2.0E+00
2 0.0E+00
4 1.0E+00
6
8

The following table shows the results published in [1], calculated by hand with 1 iteration, and those

calculated by the program Sspace().

Eigenvalues Eigenvectors
[1] Sspace [1] Sspace [1] Sspace
0.14645 0.14645 0.25 0.25 0.25 0.25
0.085355 0.085355 0.50 0.50 0.50 0.50
0.60355 0.60355 0.10355 -0.10355
0.70711 0.70711 0.70711 -0.70711

It must be noted that, if there are some zero masses in a diagonal (lumped) mass matrix, only one
iteration is needed with the subspace iteration method, as established in [1].

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 7

Example 1 from “Programma di calcolo SSPACE” [2]

The data reported in the reference are:

2 -1 0 0 30 00
-1 2 -1 0 0 2 0 O
K 0 -1 2 -1 M 0 0 4 0
0 0 -1 1 0 0 0 1
The input data for the program are listed below.
TITLE: example 1 Boreggio Bena global stiffness matrix in compacted form
NDOFN 2.E+00
4 2.E+00
NKGLO -1.E+00
7 2.E+00
NMGLO -1.E+00
4 1.E+00
NROOT -1.E+00
4 global mass matrix in compacted form
MAXAD 3.E+00
1 2.E+00
2 4.E+00
4 1.E+00
6
8

The following table shows the results published in [2], and those calculated by the program
Sspace().

Eigenvalues
[2] Sspace
0.0517654 0.051765
0.464639 0.46464
1.1714 1.1714
1.47886 1.4789

Eigenvectors
[2] Sspace [2] Sspace [2] Sspace [2] Sspace
0.1548 0.15483 0.4634 0.46336 -0.2471 | -0.24706 0.1834 0.18336
0.2856 0.28561 0.2808 0.28083 0.3741 0.37410 -0.4468 | -0.44678
0.3868 0.38682 -0.1627 | -0.16266 0.1188 0.11882 0.2445 0.24452
0.4079 0.40794 -0.3038 | -0.30384 | -0.6932 | -0.69319 | -0.5106 | -0.51064

The results listed in [2] have been checked with the program CAL78, written by professor Edward
L. Wilson of the University of California, Berkeley.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 8

Example 2 from “Programma di calcolo SSPACE” [2]

The data reported in the reference are:

5 —4 1 0 2 0 0 O
—4 6 —4 1 0 2 0 O
K 1 -4 6 —4 M 0 0 1 0
0 1 -4 5 0 0 0 1
The input data for the program are listed below.
TITLE: example 2 Boreggio Bena global stiffness matrix in compacted form
NDOFN 5.E+00
4 6.E+00
NKGLO -4 .E+00
9 6.E+00
NMGLO -4 .E+00
4 1.E+00
NROOT 5.E+00
4 -4 .E+00
MAXAD 1.E+00
1 global mass matrix in compacted form
2 2.E+00
4 2.E+00
7 1.E+00
10 1.E+00

The following table shows the results published in [2], and those calculated by the program
Sspace().

Eigenvalues
[2] Sspace
0.0965373 0.096537
1.39147 1.3915
4.37355 4.3735
10.6384 10.638
Eigenvectors
[2] Sspace [2] Sspace [2] Sspace [2] Sspace
0.3126 0.31263 0.4453 0.44527 -0.4387 | -0.43867 | -0.1076 | -0.10756
0.4955 0.49548 0.1244 0.12444 0.4167 0.41674 0.2556 0.25563
0.4791 0.47912 -0.4894 | -0.48944 | 0.02322 | 0.023222 | -0.7283 | -0.72825
0.2898 0.28979 -0.5770 | -0.57702 | -0.5170 | -0.51697 0.5620 0.56197

The results listed in [2] have been checked with the program CAL78, written by professor Edward
L. Wilson of the University of California, Berkeley.

The differences are only due to the different significant digits used to write the values.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 9

3 Modal participation factors and participating masses

The participation factor [FJ] for mode j, in the direction i, indicates how strongly motion in the
generalized directions 1+6 (X, vy, z, Xx, Yy, zz) is represented in the eigenvector of this mode. It is
defined as:

[6,]" [M] [r;]

1= o 1 [

(3.1)

where:
[qu] is the eigenvector j
[M] is the global mass matrix of the structure

[;] is the influence matrix which represents the displacements of the masses resulting from static
application of a unit ground displacement. The influence vector induces a rigid body motion in
all modes.

[¢j]T[M] [¢;] is the generalized mass ma

Eigenvalues are only determined up to an arbitrary scalar factor, i.e. if [d)j] is an eigenvector, also
C [qu] is an eigenvector (c is a real number). Eigenvectors are usually normalized such that its norm

equals 1 (normalized to unity), or such that [qu]T[M] [¢;] = 1 (normalized to the mass matrix).
The eigenvectors calculated by the program presented in this paper are normalized to the mass
matrix.

The influence matrix is an identity matrix for the translational degrees of freedom (dof), while
contains the differences of the displacements with respect to a centre of rotation for the rotational
dof. In the present treatment only the participation factors and the participating masses for the
translational dof will be considered.

With these assumptions expression (3.1) becomes:

T
5] = [¢,] m] (3.2)
The participating mass for the j mode is calculated with the following expression:
[o]"
[M;] =
Meot

Where:
Mo, IS the total mass of the structure.

Italian building code (NTC 2018 §7.3.3.1) prescribes that the number of calculated modes must
involve at least 85% of the total mass in each of the x, y directions; other codes request a slightly
different percentage.

The routine that calculates participation factors and participating masses is presented below.

Matrix EigenVec(NDOFT, NROOT) contains the eigenvectors calculated in Sub Sspace, where
NROOT is the number of requested modes.

Vector TotalMass(NDOFT) is calculated in Sub ADDBAN_Mass and in Sub AddLoadMass listed in
Appendix B.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 10

Paolo Varagnolo Ingegneria — info@studioingegneriavaragnolo.com

Sub ParticipantMassesCalculation(EigenVec(,) As Double)
'calculate participation factors pfj and participant masses pmj in each mode j

'given: EigenVec(NDOFT, NROOT) calculated eigenvectors
! TotalMass(Idofn) = total mass previously calculated

Dim Icoun, Jcoun, Ibase, Idire, Mass(NDOFT) As Integer
Dim Product(NROOT, NDOFT), Sum As Double
ReDim PartFact(NROOT, NDOFN), PartMas(NROOT, NDOFN)

'find positions of (x, y, z) masses in the global mass matrix
Icoun = 0
For Ipoin = 1 To Npoin
For Idofn = 1 To NDOFN
If IDDOF(Idofn, Ipoin) > 0 Then
Icoun += 1
If Icoun <= NDOFT Then 'And Idofn <= 3 Then
Mass(Icoun) = Idofn
End If
End If
Next Idofn
Next Ipoin

'calculation of Modal Participation Factors
If IfLumped Then
'product of eigenvectors (transpose) by lumped mass matrix: FTxM
For Iroot = 1 To NROOT
For Idofn = 1 To NDOFT
Product(Iroot, Idofn) = EigenVec(Idofn, Iroot) * GLOBM(Idofn)
Next Idofn
Next Iroot
Else
'product of eigenvectors (transpose) by consistent mass matrix: FTxM
For Iroot = 1 To NROOT
For Idofn = 1 To NDOFT
Sum = 0

'calculate number of elements above the skyline
Icoun = Idofn - MCOLH(Idofn) - 1

'Lloop on elements above the diagonal and under the skyline
For i% = MAXAD(Idofn) + MCOLH(Idofn) To MAXAD(Idofn) Step -1
Icoun += 1
Sum += EigenVec(Icoun, Iroot) * GLOBM(i%)
Next i%
'Loop on the elements under the diagonal (= elements on the row)
Jcoun = 0
For i% = Idofn + 1 To NDOFT
Icoun += 1
Jcoun += 1
Ibase = MAXAD(i%)
If MCOLH(i%) >= Jcoun Then
Sum += EigenVec(Icoun, Iroot) * GLOBM(Ibase + Jcoun)
End If
Next i%
Product(Iroot, Idofn) = Sum
Next Idofn
Next Iroot
'Call Control_FTxMxF(Product, EigenVec) 'must be the Identity matrix: FTxMxF = I
End If

'calculate Modal Participation Factors in (x, y, z, rx, ry, rz) directions
For Iroot = 1 To NROOT
For Idofn = 1 To NDOFT
Idire = Mass(Idofn)
PartFact(Iroot, Idire) += Product(Iroot, Idofn)
Next Idofn

mailto:info@studioingegneriavaragnolo.com

Next Iroot

'calculation of Modal Participating masses
For Iroot = 1 To NROOT
For Idime = 1 To NDIME
If TotalMass(Idime) <> @ Then
PartMas(Iroot, Idime) = PartFact(Iroot, Idime) * 2 / TotalMass(Idime)
End If
Next Idime
Next Iroot

End Sub

Follows a detailed calculation of participating masses as performed by the previous routine,
referring to Example 2, whose data are shown in the next figure.

dof.=1+4 dof =58 |
x|y |z xxlyylzz x|y |z [xx|yy|zz
olojo|1]o][1 olofo|1]o]1 1 <
o
+x 3. .4
3
2] 08
H——k
° E = 32588108 kN/m?
- A=032m?
J1=0.00426667 m*
J2 =0.01706667 m*

1 2 - 4
o W W Jt =0.01169067 m
v =01

= A &0 A+ p =25 kN/m?
PM3 - Units: kN, m, s m=2.5491996 kN/m°>/ g
g =9.807 m/s?

There are no concentrated or distributed loads, therefore the total mass mror on not restrained dof
is:

Mror = 2.5491996 x 0.32 x (2 x 1.5 + 5) = 6.525951
From the figure we see that the total number of degrees of freedom NDOFT = 8, while the positions
of (x, y, z) masses in array Mass(1+-NDOFT) are:

dof 1 2 3 4 5 6 7 8
disp/rot x—disp y-disp z—disp yy-rot x—disp y-disp z-disp yy-rot
Mass(Idofn) 1 2 3 0 1 2 3 0

Next calculation is the product of [¢j]T[M] (rows by columns). Follows the [¢j]Tmatrix:

PM3 calculated eigenvectors (normalized to the mass matrix)
mode 1 3.91E-01 5.96E-20 1.99E-03 1.03E-01 3.91E-01 6.06E-20 -1.99E-03 1.03E-01
mode 2 -8.07E-17 3.91E-01 -4.10E-19 -2.13E-17 -8.07E-17 3.91E-01 4.10E-19 -2.13E-17
mode 3 -3.49E-16 -3.91E-01 &.78E-18 -9.23E-17 -3.49E-16 3.91E-01 1.23E-17 -9.22E-17
mode 4 1.50E-17 -2.95E-13 3.91E-01 -1.56E-15 1.41E-17 2.95E-13 3.91E-01 -1.56E-15
mode 5 -1.99E-03 B.08E-28 3.91E-01 7.36E-02 -1.99E-03 4.04E-28 -3.91E-01 7.36E-02
mode & -3.91E-01 9.22E-14 3.46E-18 -1.51E-01 3.91E-01 -9.59E-14 -1.86E-18 1.51E-01
direction 1 2 3 0 1 2 3 V]

X y z X y z

each row contains the eigenvector calculated for each vibration mode
each column contains the contributions of the modes to a single dof

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 12

The example here reported deals with the lumped mass matrix, that is listed here under (empty
values are zeros):

Lumped global Mass Matrix

3.26E+00
3.26E+00
3.26E+00
0
3.26E+00
3.26E+00
3.26E+00
]
The product row by columns gives the following matrix:
multiplication: eigenvalues x mass matrix
mode 1 1.28E+00: 1.94E-19; ©.50E-03: 0.00E+00; 1.28E+00: 1.98E-19: -6.30E-03: 0.00E+00
mode 2 -2.63E-16; 1.28E+00: -1.34E-18! 0.00E+D0: -2.63E-16: 1.2BE+00: 1.34E-18: 0.00E+00
mode 3 -1.14E-15; -1.28E+00: 2.86E-17! 0.00E+00: -1.14E-15: 1.28E+00: 4.02E-17: 0.00E+00
moded 491E-17; -9.04E-13; 1.28E+00: 0.00E+00: 4.60E-17: 9.64E-13; 1.28E+00: 0.00E+O00C
mode 5 -6.50E-03; 2.04E-27: 1.28E+00; 0.00E+00: -0.50E-03: 1.32E-27:-1.28E+00: 0.00E+00
mode b -1.28E+00: 3.01E-13; 1.13E-17: 0.00E+00; 1.28E+00; -3.13E-13: -6.08E-18: 0.00E+00
direction 1 2 3 0 1 2 3 0
X i z X Vi z

The multiplication gives the participation factors contributions split on the degrees of freedom of
the FEM model. Adding the corresponding contributions (col. 1 + col. 5, col. 2 + col. 6, col. 3 + col.
7, col. 4 + col. 8) the final participation factors are obtained, as listed in the next table. On the right
the values calculated by Sap4 are listed.

Participation Factors I'; (j=1+6) Sap4 results
2.55E+00 3.92E-19 0.00E+00 0.00E+00 MODAL PARTICIPATION FACTORS
-3.276-16 2.55E+00 0.00E+00 0.00E+00 MODE X-DIRECTION Y-DIRECTION Z-DIRECTICH
-2.28E-15 0.00E+00 6.89E-17 0.00E+00
9.51E-17 0.00E+00 2.55E+00 0.00E+00 1 -0.2554E+01 0.8318E-20 0.5204E-1
-1.30E-02 3.95E-27 0.00E+00 0.00E+00 2 0.3133E-18 -0.2554E+01 .46
0.00E+00 -1.19E-14 5.21E-12 0.00E+00 : 0.3236E-16 -0.59304E-1 0.477

1 N 3 0 4 -0.80T4E-18 -0 E —0.255

] 0.2145E-01 J. E —0.3108E-1
X Y z yy-rot

Finally, the participating masses are calculated as participation factors squared, divided by the total
mass. The result is listed below.

Participating masses = 1"1-2 /M,

1.00E+00 2.36E-38 0.00EHDO
4,25E-32 1.00E+00 OQ.00E+00
7.96E-31 0.00E+00 7.27E-34
1.28E-33 0.00E+00 1.00E+00
2.59E-05 2.40E-54 0.00EH00
0.00E+00 2.18E-29 4.16E-36

1 2 3

X y z

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

13

Next images and tables refer to the same structure, calculated with consistent mass matrices.

Calculated eigenvectors with consistent mass matrix (normalized to mass matrix)
424E-01(B.08E-19| 1.B28E-03| 1.08E-01| 4.24E-01| -7.0BE-19| -1.88E-03| 1.08E-01
5.03E-17(4.12E-01| 3.53E-15| -5.45E-14(1.32E-15| 4.12E-01| 3.53E-15| 5.49E-14

Eig-r 5.62E-03| 2.24E-13| -3.13E-02| 4.84E-01| -5.62E-03| 1.18E-14| -3.13E-02| -4.84E-01
[NROOTNDOFT) 1.76E-14| -5.13E-01| -1.23E-15| 2.46E-14| 1.71E-14| 5.13E-01| -1.39E-15| -1.59E-14
2.76E-02| -1.22E-14| -1.16E-01| 9.63E-01| B.76E-02| 1.22E-14| 1.16E-01| 9.63E-01
-3.57E-01| -3.41E-13| 3.95E-01| 3.05E-01| 3.57E-01| 3.41E-13| 3.95E-01| -3.05E-01
direction 1 2 3 0 1 2 3 0
X y z X ¥ z
Consistent global Mass Matrix
2.268545] 0: -0.38456: 0.679787]] 0]
0; 2.423925]] 0: 0.524407]]
M 1] 0: 2.330697: -1.06824 o 0: 0.524407; 0.63123
[NDOFT=NDOFT) -0.38456 0: -1.06824: 1.180886] 0: -0.63123: -0.72834
0.679787] o 0: 2.268545] 0: -0.38456
0: 0.524407]] 0: 2.423925]]
1] 0i 0.524407; -0.63123 o 0: 2.330697: 1.068236
] 0: 0.63123: -0.72834: -0.38456 0: 1.068236: 1.180886
multiplication: eigenvalues x mass matrix
1.21E+00: 1.59E-18; 4.36E02! -1.15E-01; 1.21E+00! -1.29E-18: 4.36E-02; -1.15E01
2.20E-14: 1.21E+00: 1.03E-13; -1.10E-13! -1.81E-14: 1.21E+00:! 1.03E-13! 1.10E-13
Prod -1.77E-01; 5.50E-13: 9.12E-01: 9.76E-01; 1.77E-01: 1.46E-13; -9.12E-01: -9.76E-01
[NROOT:NDOFT) 4.21E-14: -9.75E-01! -3.99E-14; 3.61E-14: 5.69E-14: 9.75E-01: -3.64E-14: 4.55E-14
-1.12E-01: -2.33E-14: -6.31E-01: 453E-01: -1.12E-01: 2.33E-14: 6.31E-01: 4.53E-01
-6.84E-01: -6.47E-13! ©6.10E-01: 4.73E-02! 06.84E-01: ©6.47E-13! 6.10E-01: 4.73E-02
Participation Factors I'; (j=1+6]) Participating masses =]."j2 /My,
2426400 3.00E19 0.00E+00 -230E-01 8.95E-01 1.38E-38 0.00E+00
3.90E-15 2.43E+00 2.06E-13 -3.72E-16 2.33E-30 9.04E01 6.51E-27
0.00E+00 6.90E-13 -1.82E+00 O0.00E+H00 0.00E+00 7.43E-26 5.10E01
9.90E-14 0.00E+00 -7.63E-14 9ASE-15 1.50E-27 0.00E+00 8.92E-28
-2.24E-01 0.00E+00 0.00E+00 9.06E-01 7.70E-03 0.00E+00 O0.00E+O0
0.00E+00 O0.00E+00 1.22E+00 O0.00E+HD0 0.00E+00 0.00E+00 2.2BE01
1 2 3 1] 1 2 3
X Y z yy-rot X ¥ z

T
In the routine ParticipantMassesCalculation, after the multiplication [qu] [M], there is a

commented line that hides a call to the routine Control_FTxMxF(Product, EigenVec): some

(positive) controls have been made in order to verify that the product [qu]T[M] [¢] gives the

Identity matrix [I].

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

14

Xd'yo"fz' :x:‘;?/zz When a consistent mass matrix is adopted, the product [(l)j]T[M] is
4@ |[0[1][0]1|0]1 particular, due to the storage scheme of the mass matrix (see § 2.1).
The image on the left shows an example structure, useful to
understand the procedure adopted.
There is a total number of 9 degrees of freedom: the tables below
d.of =4+6 show the mass matrix GLOBM(NMGLO), the first eigenvector
s ‘SMS x1><‘y8/‘z12 transposed, vector MAXAD(NDOFT+1) and vector MCOLH(NDOFT).
The mass matrix is symmetric, so the product of the eigenvector by
the columns of the matrix follows the columns until it reaches the
diagonal element and then follow the row, from the diagonal element
to the right.
xd'yo'fz' :x:;;": . Furthermore, only the elements below the skyline are stored in the
2@ |0|1|0|1]0|1 one-dimensional GLOBM(NMGLO) array: for this reason, the
procedure must evaluate the degrees of freedom involved, in order
to associate the correct dof in the eigenvector with the correspondent
dof of the mass matrix.
Starting with the columns, the multiplication must skip a number of
LTS elements equal to:
[Icoun = Idofn - MCOLH(Idofn) - 1]
Example Proceeding then with the rows, the multiplication is performed only if
MCOLH(current dof) is greater than the current dof.
gs)
Consistent Mass Matrix o
dof —= 1 2 3 4 5 6 7 8 9 ¢
0325 1]0.000 3[-0.137 5|0.042 10/0.000 15/-0.046 21 / / / A
0.292 _ 2/0.000 0.000 0.055 0.000 / / / N
0.356 4]0.046 0.000 -0.047 / / / ™
0.203 7]/0.000 -0.043 0.028 5/0.000 30]-0020 3¢f
.182 11/0.000 0.000 0.036 0.000 w0
0.082 16/0.020 0.000 -0.014 ©
symmetric 0.081 220000 |-0.034 ~
073 26/0.000 o
0.019 af] @
First Eigenvector
dof —» 1 2 3 4 5 6 7 8 9
0.649 0.000 0.148 1.388 0.000 0.174 1.913 0.000 0.176
MAXAD(NDOFT+1)
dof —» 1 2 3 4 5 6 7 8 9
1 2 4 7 11 16 22 26 31 37
MCOLH(NDOFT)
dof —m 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 3 4

When the eigenvector is multiplied by the 2" dof, calling E() the eigenvector and M() the array
containing the mass matrix, the multiplication is:

E(1)xM(3)+ E(2)xM(2)+ E(3)xM(5)+ E(4)xM(9)+ E(5)xM(14)+ E(6)xM(20) =0

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 15

And, when the eigenvector is multiplied by the 7™ dof, the multiplication is:

E(4)xM(25)+ E(5)xM(24)+ E(6)xM(23)+ E(7)xM(22)+ E(8)xM(27)+ E(9)xM(33) = 0.191

Let us see in detail how the program performs the multiplication, referring to the first eigenvector,

for Idofn = 2.
Iroot=1
Idofn =2

Sum=0

'calculate number of elements above the skyline
Icoun = Idofn - MCOLH(Idofn) -1 =2-1-1=20
'loop on elements above the diagonal and under the skyline

For i% =
i%

i%

Next i%

MAXAD(2) + MCOLH(2) To MAXAD(2) Step -1 =2 + 1 = 3 To 2 Step -1
3:

2:

Icoun +=1 =1

Sum += EigenVec(l, 1) * GLOBM(3) = 0.649 * 0
Icoun += 1 = 2
Sum += EigenVec(2, 1) * GLOBM(2) = 0 * 0.292

'"loop on the elements under the diagonal (= elements on the row)

Jcoun = 0

For i% = Idofn + 1 To NDOFT =2 + 1 = 3 To 9

i%

i%

3:

Icoun += 1 = 3
Jcoun += 1 =1
Ibase = MAXAD(i%) = 4
If MCOLH(3) = 2 >= Jcoun = 1 (True) Then
Sum += EigenVec(3, 1) * GLOBM(5) =
0. +0.148 * 0 =0+ 0 =20
End If
Icoun += 1 = 4
Jcoun += 1 = 2
Ibase = MAXAD(i%) = 7
If MCOLH(4) = 3 >= Jcoun = 2 (True) Then
Sum += EigenVec(4, 1) * GLOBM(9) =
0. +1.388 0 =0+0-=20
End If
Icoun += 1 =5
Jcoun += 1 = 3
Ibase = MAXAD(i%) = 11
If MCOLH(5) = 4 >= Jcoun = 3 (True) Then
Sum += EigenVec(5, 1) * GLOBM(14)
0. +0 *0.055=0+0=20

End If
Icoun += 1 = 6
Jcoun += 1 = 4
Ibase = MAXAD(i%) = 16
If MCOLH(6) = 5 >= Jcoun = 4 (True) Then
Sum += EigenVec(6, 1) * GLOBM(20)
0 +0.0.174 * 0 =0+0=20

End If

Icoun +=1 =17

Jdcoun += 1 =5

Ibase = MAXAD(i%) = 22

If MCOLH(7) = 3 >= Jcoun = 5 (False) Then
End If

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

16

i% = 8: Icoun += 1 = 8

Jcoun += 1 = 6

Ibase = MAXAD(i%) = 26

If MCOLH(8) = 4 >= Jcoun = 6 (False) Then
End If

Icoun += 1 =9

Jcoun +=1 =17

Ibase = MAXAD(i%) = 31

If MCOLH(9) = 5 >= Jcoun = 7 (False) Then
End If

i%

1l
L]

The product of the first eigenvector by the 2" column of the mass matrix gives a zero value,
meaning that the participation factor of the first vibration mode on the 2" dof (z displacement at
node 2) is null.
Let us see now in detail the multiplication, referring again to the first eigenvector, for Idofn = 7.
Iroot =1
Idofn =7

Sum =0

'calculate number of elements above the skyline

Icoun = Idofn - MCOLH(Idofn) -1 =7 -3 -1 =3

'Lloop on elements above the diagonal and under the skyline

For i% = MAXAD(7) + MCOLH(7) To MAXAD(7) Step -1 = 22 + 3 = 25 To 22 Step -1

i% = 25: Icoun += 1 = 4

Sum += EigenVec(d, 1) * GLOBM(25) = 1.388 * 0.028 = 0.039
i% = 24: Icoun += 1 =5

Sum += EigenVec(5, 1) * GLOBM(24) = 0.039 + 0 * 0 = 0.039
i% = 23: Icoun += 1 = 6

Sum += EigenVec(6, 1) * GLOBM(23) =

= 0.039 + 0.174 * 0.020 = 0.039 = 0.0642
i% = 22: Icoun += 1 =17
Sum += EigenVec(7, 1) * GLOBM(22) =
= 0.042 + 1.913 * 0.081 = 0.039 = 0.197
Next i%
'loop on the elements under the diagonal (= elements on the row)
Jcoun = 0
For i% = Idofn + 1 To NDOFT =7 + 1 = 8 To 9
i% = 8: Icoun += 1 = 8
Jcoun +=1 =1
Ibase = MAXAD(i%) = 26
If MCOLH(8) = 4 >= Jcoun = 1 (True) Then
Sum += EigenVec(8, 1) * GLOBM(27) =
= 0.197 + 0 * 0 = 0.197
End If
i% = 9: Icoun += 1 = 9

Jcoun += 1 = 2
Ibase = MAXAD(i%) = 31
If MCOLH(9) = 5 >= Jcoun = 2 (True) Then
Sum += EigenVec(9, 1) * GLOBM(33)
0.197 + 0.176 * -0.034 = 0.197 + 0 = 0.191

End If

The participation factor of the first vibration mode on the 7" dof (x displacement at node 4) is 0.191.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 17

4 Definition of the response spectrum

The response spectrum is a function defining the acceleration of simple harmonic oscillators with
respect to the period, when they are subjected to a transient event. The response spectrum is a
function of the natural period or frequency of each oscillator and of several other parameters listed
below.

The response spectrum can be used to study the response of any linear system, also with many
degrees of freedom (multi-degree of freedom systems), given its natural frequencies of oscillation.
The spectrum can be defined applying the rules given by any national building code, as a function
of the site, the type of soil, the damping of the structure, the topographical conditions, and the
behaviour factor. It has the shape shown in the next figure. The design spectrum is derived from
the elastic one, dividing the values by the behaviour factor, depending on the ductility of the
structure.

Aglg ()
0.40

0.385 elastic spectrum
design spectrum

0.00 1.00 200 400 500

3.00
Feriod (s)
In the program MdFem the response spectrum is stored in a two-dimensional array, directly read
from the input file. The program reads only one parameter that can modify the spectrum, the
behaviour factor.

The program reads also the value of the viscous damping, but only to obtain the CQC combinations
described in the next paragraph.

5 Calculation of seismic forces

In the response spectrum analysis (RSA) the main idea is that, for each vibration period, the
maximum acceleration of the structure may be calculated with the response spectrum (of many
single dof pendulums).

The peak force on the pendulum oscillating mass is:

Fnax =k Ymax = M Qpax (5.1)
since:

we can also write:

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 18

https://en.wikipedia.org/wiki/Linear

_ Qmax (5.2)
Ymax = w2

Expressions (5.1) and (5.2) can be called the Forces Method and the Displacements Method in
Response Spectrum Analysis.
The distribution either of the forces or of the displacements in the structure, for mode j, is evaluated
multiplying Fr,qx OF Yimax by the eigenvector ¢;, obtaining:

[5] = 6 Fnas (53

[uj] = d)j Ymax (5.4)
From the calculated nodal displacements, the internal forces of each element are obtained
multiplying the element stiffness matrix by the displacements vector.
The above expressions (5.3), (5.4) must be evaluated for all the calculated periods, and then the
results must be combined.

The most common combination rules are the Complete Quadratic Combination (CQC) and the
Square Root of Sum of Squares (SRSS). Italian building code impose the CQC combination, while
Eurocode 8 for instance allows both the methods.

Some comments on the reliability of the methods can be found in [10].

5.1 SRSS combination

Referring to the calculated forces, displacements, or internal forces, as a generic vector [vj], the
SRSS combination is:

Index j runs from 1 to the number of calculated eigenvalues p.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 19

5.2 CQC combination

For simplicity we can directly refer to a single component v}, of the generic vector [vj].

The combined value is:

P D
Vg = szki Pij Vkj

i=1j=1
For constant modal damping &, the cross-modal coefficients p;; are calculated as:
szﬁij3/2
= 2
(1+8) (1= By)” + 4828,

Pij

where:
Bij = T;/T; is the ratio between the inverse of the vibration periods i, j.

The routine that calculates the cross-modal coefficients p;; is presented below.

Sub RoijCalc()
'calculation of C.Q.C. Roij correlation coefficients

Dim Betaij As Double
ReDim Roij(NROOT, NROOT)

For Imode = 1 To NROOT
For Jmode = 1 To NROOT
'Betaij = Period(Jmode) / Period(Imode)
Betaij = CircFreq(Imode) / CircFreq(Jmode)
Roij(Imode, Jmode) = 8 * DampCsi " 2 * Betaij " 1.5
Roij(Imode, Jmode) /= (1 + Betaij)

Roij(Imode, Jmode) /= ((1 - Betaij) ™~ 2 + 4 * DampCsi "~ 2 * Betaij)

Next Jmode
Next Imode

End Sub

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

20

5.3 Displacements methods in RSA

The routine that calculates the displacements of expression (5.4) is presented below.

The code is quite simple, due to the many comment lines and the self-explaining variables names.
In any case, a brief description of the operations is given.

The participation factors are simply summed in the three x, y, z directions in the case of CQC
combination, while the sum is made on the absolute values in the case of SRSS combination.

The subroutine calculates the displacements of every mode referring to the simple oscillator, and
then those of the structure multiplying the simple oscillator displacements by the eigenvectors.
Follow the CQC or SRSS combination of the displacements, depending on the boolean variable
IfCQC value.

Finally, spectrum displacements are stored in the array SpecDisp(Iroot, Ipoin, Idofn), and combined
displacements are stored in the array Displ(CurCase, Ipoin, Idofn) =CombStruDisp(Icoun)

Sub SpectralResponse(EigenVec(,) As Double)
'calculate Modal Response Spectrum analysis
'given: EigenVec(NDOFT, NROOT) calculated eigenvectors

Dim Icoun, Ldofn As Integer

Dim PartFac, Force, Displa(NROOT), StruDisp(NDOFT, NROOT) As Double
Dim Sum2 As Double

ReDim SpecDisp(NROOT, Npoin, NDOFN), CombStruDisp(NDOFT)

Dim Dire(3) As Single
Dire(1) = 1 : Dire(2) =1 : Dire(3) =1

'compute displacements of the simple oscillator and then those of the structure
For Iroot = 1 To NROOT
PartFac = 0
For Idime = 1 To NDIME
If IfCQC Then
PartFac += PartFact(Iroot, Idime) * Dire(Idime)
Else
PartFac += Math.Abs(PartFact(Iroot, Idime)) * Dire(Idime)
End If
Next Idime

Force = PartFac * ModalAccelerationCalc(Iroot)
Displa(Iroot) = Force / CircFreq(Iroot) " 2 'displacement of the simple oscillator

'calculation of structure displacements from the simple oscillator displacement
For Idofn = 1 To NDOFT
StruDisp(Idofn, Iroot) = EigenVec(Idofn, Iroot) * Displa(Iroot)
Next Idofn
Next Iroot

'calculation of CQC or SRSS combinations of displacements for every d.o.f.
Call RoijCalc() 'compute C.Q.C. Roij correlation coefficients (always needed with forces
method)
For Idofn = 1 To NDOFT
Sum2 = 0
If IfCQC Then
'Complete Quadratic Combinations (C.Q.C.) of displacements
For Jmode = 1 To NROOT
For Imode = 1 To NROOT
Sum2 += Roij(Imode, Jmode) * StruDisp(Idofn, Imode) * StruDisp(Idofn,
Jmode)
Next Imode
Next Jmode

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 21

Else
'Square Root of Sum of Squares combinations (S.R.S.S.) of displacements
For Imode = 1 To NROOT
Sum2 += StruDisp(Idofn, Imode) " 2
Next Imode
End If

CombStruDisp(Idofn) = Math.Sqrt(Sum2)
Next Idofn

'store spectrum displacements in SpecDisp(,,) array
For Iroot = 1 To NROOT
For Ipoin = 1 To Npoin
For Idofn = 1 To NDOFN
Ldofn = IDDOF(Idofn, Ipoin)
If Ldofn > 0 Then
SpecDisp(Iroot, Ipoin, Idofn) = StruDisp(Ldofn, Iroot)
End If
Next Idofn
Next Ipoin
Next Iroot

'store spectrum displacement combinations in index 0 of displacements array
CurCase = 0
Icoun = 0
For Ipoin = 1 To Npoin
For Idofn = 1 To NDOFN
If IDDOF(Idofn, Ipoin) > 0 Then
Icoun += 1
Displ(CurCase, Ipoin, Idofn) = CombStruDisp(Icoun)
End If
Next Idofn
Next Ipoin

End Sub

The displacements of the nodes are used to calculate the internal element forces, with the following
routine. A brief description of the operations is given also for this routine.

The first part refers to the transformation of the calculated global displacements in local
coordinates for each element. For the details of these calculations refer to Part 1 — Static Analysis
[9]. Multiplying the local element matrices by the local displacements, the internal element forces
are obtained.

Also for the internal forces it is necessary to combine the contributes of the vibration modes, either
with the CQC or with the SRSS method.

Sub STRBER(Icase As Integer, Nelel As Integer, Nele2 As Integer, FileWork3 As String)

'STRESS CALCULATION FOR BEAM OR WINKLER ELEMENTS
'in the case of Response Spectrum Analysis

Dim Index, Idofn, Idofl, Ldofn As Integer
Dim GlobDisp(), LocDisp(), LocLoa(), Force(,), Sum, Stres(NEVAB) As Double
Dim Toler As Double = 0.0000000001

Using sr As StreamReader = File.OpenText(FileWork3) 'stiffness LOCAL matrices file

' x** LOOP OVER ELEMENTS
For Ielem = Nelel To Nele2

'read stiffness matrix

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 22

For Icolu =1 To 78
Stiff(Icolu) = sr.ReadLine
Next Icolu

ReDim Force(NEVAB, NROOT)

For Iroot = 1 To NROOT
'calculate displacements LocDisp() and NOT equivalent forces LocLoa() in
local coordinates
'transformation T matrices are calculated only once after reading data
ReDim GlobDisp(NEVAB), LocDisp(NEVAB), LocLoa(NEVAB)

For Idofn 1 To NDOFN
Idofl = Idofn + NDOFN
GlobDisp(Idofn) = SpecDisp(Iroot, Incl(Ielem), Idofn)
GlobDisp(Idofl) = SpecDisp(Iroot, Inc2(Ielem), Idofn)
Next Idofn

For Idofn = 1 To NDOFN
Idofl = Idofn + NDOFN
For Jdofn = 1 To NDOFN
Ldofn = Jdofn + NDOFN
LocDisp(Idofn) += Tmat(Ielem, Idofn, Jdofn) * GlobDisp(Jdofn)
LocDisp(Idofl) += Tmat(Ielem, Idofn, Jdofn) * GlobDisp(Ldofn)
Next Jdofn
Next Idofn

'calculate forces in local system: [K] u = f
For Ievab = 1 To NEVAB

Sum = 0
For Jevab = 1 To NEVAB
Index = Kpos(Ievab, Jevab)
Sum += Stiff(Index) * LocDisp(Jevab)
Next Jevab
Force(Ievab, Iroot) = Sum
Next Ievab
Next Iroot

ReDim Stres(NEVAB)
For Ievab = 1 To NEVAB
If IfCQC Then
'"Complete Quadratic Combinations (C.Q.C.) of displacements
For Jmode = 1 To NROOT
For Imode = 1 To NROOT
Stres(Ievab) += Roij(Imode, Jmode) * Force(Ievab, Imode) =*
Force(Ievab, Jmode)
'Stres(Ievab) += Roij(Imode, Jmode) =* Math.Abs(Force(Ievab,
Imode)) * Math.Abs(Force(Ievab, Jmode))
Next Imode
Next Jmode
Else
'Square Root of Sum of Squares (S.R.S.S.) combinations of displacements
For Iroot = 1 To NROOT
Stres(Ievab) += Force(Ievab, Iroot) " 2
Next Iroot
End If
Stres(Ievab) = Math.Sqrt(Stres(Ievab))
Next Ievab

For Ievab = 1 To NEVAB
If Math.Abs(Stres(Ievab)) < Toler Then Stres(Ievab) = 0.0
Next Ievab

'store values in Strel(,,), Stre2(,,) matrices
For Idofn = 1 To NDOFN
Strel(Icase, Ielem, Idofn)
Stre2(Icase, Ielem, Idofn)
Next Idofn
Next Ielem

-Stres(Idofn)
Stres(Idofn + NDOFN)

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 23

End Using

End Sub

5.4 Forces method in RSA

The routine that calculates the forces of expression (5.3) is presented below. For this method the
choice was made to use only CQC combination: actually, in some case SRSS combination leads to
bad results. Besides, the actual implementation is not completely satisfactory, though it works fine
in many cases. These cases include structures with regularity in plan and in elevation, as shown in
the application examples further on.

Anyway, this method needs more insights, that will be presented in the future.

Follow a brief description of the operations made by the routine

For every vibration mode j, the spectral acceleration g; is calculated: then, at any node i, and for
the x, y, z directions the program calculates the product F;; = m; ¢;; v; a;.

The next operation, performed in the second main loop on the vibration modes, is to transform the
node forces in “storey” shears.

Follows the CQC combination of shear forces and the, finally, the calculation of “storey” forces as
difference of “storey” shears.

Sub SeismicForcesCalculationCQC()
'calculation of seismic forces with Forces Method

Dim Disp As Double

Dim SeismicForce(NROOT, Npoin, NDIME), ShearForces(NROOT, Npoin, NDIME),
BaseShearForce(NROOT, NDIME) As Double

ReDim ModalAcc(NROOT)

ReDim SeismicForceCQC(Npoin, NDIME)

ReDim ShearForcesCQC(Npoin, NDIME)

For Imode = 1 To NROOT
ModalAcc(Imode) = ModalAccelerationCalc(Imode)
For Ipoin = 1 To Npoin
For Idime = 1 To NDIME
Disp = Displ(Ncase + NCOMB + Imode, Ipoin, Idime)
SeismicForce(Imode, Ipoin, 1Idime) = NodalMass(Ipoin) * Disp =*
PartFact(Imode, Idime) * ModalAcc(Imode)
BaseShearForce(Imode, Idime) += SeismicForce(Imode, Ipoin, Idime)
Next Idime
Next Ipoin
Next Imode

'transform seismic forces in storey shears
For Imode = 1 To NROOT
For Idime = 1 To NDIME
ShearForces(Imode, Npoin, Idime) = SeismicForce(Imode, Npoin, Idime)
For Ipoin = Npoin - 1 To 1 Step -1
ShearForces(Imode, Ipoin, Idime) = ShearForces(Imode, Ipoin + 1, Idime) +
SeismicForce(Imode, Ipoin, Idime)
Next Ipoin
Next Idime
Next Imode

'complete quadratic combinations C.Q.C. of shear forces (D.M. 14.01.2018)
For Jmode = 1 To NROOT
For Imode = 1 To NROOT
For Ipoin = 1 To Npoin

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 24

ShearForcesCQC(Ipoin, 1) += Roij(Imode, Jmode) * ShearForces(Imode, Ipoin,

1) * ShearForces(Jmode, Ipoin, 1)

ShearForcesCQC(Ipoin, 2) += Roij(Imode, Jmode) * ShearForces(Imode, Ipoin,

2) * ShearForces(Jmode, Ipoin, 2)
Next Ipoin
Next Imode
Next Jmode

For Ipoin = 1 To Npoin
ShearForcesCQC(Ipoin, 1)
ShearForcesCQC(Ipoin, 2)

Next Ipoin

Math.Sqrt(ShearForcesCQC(Ipoin, 1))
Math.Sqrt(ShearForcesCQC(Ipoin, 2))

'and now, finally, calculate storey forces as differences of storey shears
For Idime = 1 To NDIME
SeismicForceCQC(Npoin, Idime) = ShearForcesCQC(Npoin, Idime)
Next Idime
For Ipoin = Npoin - 1 To 1 Step -1
For Idime = 1 To NDIME
SeismicForceCQC(Ipoin, Idime)
ShearForcesCQC(Ipoin + 1, Idime)
Next Idime
Next Ipoin

End Sub

ShearForcesCQC(Ipoin, Idime)

6 Calculation Examples

Several examples are presented in this section, comparing MdFem results with the results of Sap4
(in the version of 1994 by Bruce F. Maison, based on the original 1973 Sap4 developed by K. J. Bathe,
E. L. Wilson, F. E. Peterson from the University of California, Berkley) and SismiCad (a widly used
commercial program by Concrete S.r.L. — Padova — Italy).

All the examples refer to the same spectrum, whose data are listed below.
Number of points = 44

Viscous Damping = 0.05

Behaviour Factor = 1.

period ag/g period ag/g

0.00E+00 1.46E-01 1.87E+00 1.00E-01
2.42E-01 2.57E-01 1.93E+00 9.70E-02
3.63E-01 2.57E-01 2.07E+00 8.39E-02
7.27E-01 2.57E-01 2.22E+00 7.33E-02
7.87E-01 2.38E-01 2.36E+00 6.U46E-02
8.47E-01 2.21E-01 2.50E+00 5.74E-02
9.07E-01 2.06E-01 2.65E+00 5.13E-02
9.67E-01 1.93E-01 2.79E+00 4.62E-02
1.03E+00 1.82E-01 2.94E+00 4.18E-02
1.09E+00 1.72E-01 3.08E+00 3.79E-02
1.15E+00 1.63E-01 3.22E+00 3.U46E-02
1.21E+00 1.55E-01 3.37E+00 3.17E-02
1.27E+00 1.48E-01 3.51E+00 2.92E-02
1.33E+00 1.41E-01 3.66E+00 2.69E-02
1.39E+00 1.35E-01 3.80E+00 2.49E-02
1.45E+00 1.29E-01 3.94E+00 2.31E-02
1.51E+00 1.24E-01 4.09E+00 2.15E-02
1.57E+00 1.19E-01 4.23E+00 2.01E-02
1.63E+00 1.15E-01 4.38E+00 1.88E-02
1.69E+00 1.11E-01 4.52E+00 1.76E-02
1.75E+00 1.07E-01 L.66E+00 1.65E-02
1.81E+00 1.03E-01 4.81E+00 1.56E-02

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

25

6.1 Example 1 —Antennas Pole 1
The structure is an antennas pole, initially without any load, with the characteristics shown in the
next figure. The cross section of the steel tube is 600 mm in diameter with a thickness of 5 mm. The
restrained degrees of freedom are indicated with the number 1, while the free dof are indicated
with the number 1: there are a total number of 25 dof.

N x| y|z [xx|yylzz
SR MK
wy
~| [e]
x| v|z |xx|yylzz
e B
Ty]
~
gl s |X|Y]Z xx|yyzz
olo|o|ola]1
©
x| v|z |xx|yylzz
e [S[R[6[erE
uy
<
| x| v|z |xx|yylzz
7 e ‘0‘0‘000‘1
w| 1]
~ no d.o.f.
1 x|y |z |xx|yyzz
o /Z7ﬁ2}¥1 1111

Antennas Pole 1

Steel Tube 600x5

—_

2

0.6

=

E = 2.1E08 kN/m?

A =9.10787E-03 m?

J1=392853E-04 m*
J2 = 3.92853E-04 m*
Jt = 8.27258E-04 m*

v =03

p =78.5kN/m?
m = 8.00449 kN/m®/ g
g = 9.807 m/s?

There are symmetries that lead to the same results in couple.

The comparison of the results is shown below.

Units: KN, m, s

Fundamental periods T (s) participating masses
Mode SismiCad MdFem MdFem X,y z
(lumped) (consistent)

1, 2 1.52875 0.9735 0

1.5478 0.9731 0

1.5118 0.9433 0
3, 4 0.2665 0.2689 0.2411
5 6 0.10204 0.1024 0.0857

The difference between the periods calculated with MdFem and SismiCad is approximately 1%,
while the difference between the periods calculated with the lumped and the consistent mass
matrix increase approximately from 2% (modes 1,2) to 16% (modes 5, 6).

The next figure shows the shear forces calculated with the Response Spectrum Analysis (RSA), by
the MdFem and the SismiCad programs, with the displacements method. The forces at the nodes
are calculated by hand as the differences of the shear forces, with the aim of comparison with those
calculated by MdFem with the forces method. The differences obtained with the two programs are

less then 4%.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

26

displacements method

MdFem - lumped - CQC SismiCad - lumped - CQC

Sx =8y Forces as difference of Shears Sx =8y Forces as difference of Shears
64 ce— mF=0713 6 fe— mF=074
@ 3=0.713 @ S=074

5 5e—mF =0456 5 te—mF=047
5=1.169 S5=1.21

4 44— F =0.249 4 A@—m=F =026
5=1419 S=147

3 Je—pF =0242 3 In—m=F =025
S5=1661 S5=172

29 2e—wF=0274 2@ 20— F =028
5=1935 5=200

1 1) 1 1

MdFem — Forces Method In the table on the left are listed the

File Antennas Pole 1
combinations of seismic forces

Node | C.Q.C. Force
| Fx Fy |
1 0.0000E+00 0.0000E+00
2 2.7426E-01 2.7U426E-01
3 2.4214E-01 2.4214E-01
4 2.4962E-01 2.4962E-01
5 L4.5655E-01 4.5655E-01
6 7.1286E-01 7.1286E-01
base shear 1.9354E+00 1.9354E+00

displacements method

seismic forces calculated by the MdFem
program with the forces method. In this
case the two methods give the same

results.

MdFem - lumped - SRSS

MdFem - consistent - CQC

Sx = 8y Forces as difference of Shears

6 69— F=0.599
6] S=0.599

5 54— F=0.579
S=1.178

4 40—m F=0.285
S=1463

3 38—m F=0208
S=1.671

28 2¢—mF=0214
S$=1.885

1 1

Sx =Sy

6

[6]| |S=1005

]

S=1652
4

$=2.004
3

S =2.340
2%

§=2717

Vi

Forces as difference of Shears

69— » F=1.005

54— F=0647

4 F=0.352
3I::F =0.336

2¢—mF =0.377

1

T

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 27

In the previous image, the left side shows the resulting shear forces and nodal forces calculated
with the consistent mass matrices and CQC combination, while the right side shows the same values
obtained with the lumped mass and SRSS combination. Both the calculations are made by MdFem.

The shear forces obtained with the consistent mass matrices + CQC are slightly lower then those
calculated with the lumped mass matrices + CQC (2.6% on base shear).

The shear forces obtained with the lumped mass matrices + SRSS greatly overestimate those
obtained with the CQC combination.

Little variations to the described problem are represented in the next figure, where a concentrated
load of 5 kN is inserted on the top of the pole (file Antennas Pole 2), and a linear horizontal load is
applied to element number 6 (file Antennas Pole 2). In the MdFem program, the loads defined in
the load condition number 2 are considered as masses acting in the three dimensions x, v, z.

The results of the first variation are compared with the SismiCad results.

The aim of these new examples is to see how the periods of the natural modes vary with the
increase of the masses.

5 kN 5 kN

ok 6. 5 KN i Gh
@l [@ g 1 kN/m
=5 59 I~ 5
< <G
3l 49 ol 49
® ®
i 38 s k1
2 2
“F 2e I~ 2e
0 0
B it 1 N i 1
S iij’j? S iii%??
Antennas Pole 2 Antennas Pole 22
Antennas Pole 2
Fundamental periods T (s) participating masses
Mode SismiCad MdFem MdFem X,y z
(lumped) (consistent)
1, 2 2.09763 0.9783 0
2.09696 0.9780 0
2.06923 0.9506 0
3, 4 0.30515 0.30404 0.29140
5, 6 0.10483 .10742 0.09826
The results are very close, and the periods have higher values than those without loads.
Antennas Pole 22
Fundamental periods T (s) participating masses
Mode MdFem (lumped) MdFem X,y z
(consistent)
1, 2 2.56844 0.9814 0
2.54576 0.9594 0
3, 4 0.33647 0.32606
5, 6 0.12238 0.11268

The periods continue to increase, and the periods with consistent mass matrices remain lower.
Furthermore, the participant masses with the consistent mass matrices are slightly lower.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 28

6.2 Example 2 -PM3
This example has been already introduced in §3 where a detailed description of the calculation of
the participation factors and of the participating masses is shown.

The structure is a single-span, single-storey concrete frame without any load, with the
characteristics shown in the next figure. The cross section is 0.8 m x 0.4 m. The restrained degrees
of freedom are indicated with the number 1, while the free dof are indicated with the number 0:
there are a total number of 8 dof.

dof.=1+4 dof =5+8 |
alofa[Tlolt 8|85 el 1] TI
o
+ 3¢]
0.8
ol [1] E = 32588108 kN/m?
- A=032m?
J1 = 000426667 m*
J2 = 001706667 m*
£ W m Jt=0.01169067 m*
-..t_. 5.0 V=01
* #+ p =25 kN/m®
PM3 - Units: kN, m, s m=25491996 kN/m>/g
g =9.807 m/s?
The comparison of the results is shown below.
Fundamental periods T (s)
Mode SismiCad Sapu MdFem (lumped) MdFem
(consistent)
1 0.05755 0.05002 0.0587 0.0542
2 0.02377 0.02282 0.0228 0.0217
3 0.01945 0.02168 0.0191 0.0182
q 0.00543 0.006087 0.0061 0.0146
5 / 0.006067 0.0061 0.0073
6 / / 0.0055 0.0042
Modal Participation Factors
Sapt MdFem Lumped MdFem Consistent
Mode X y z X y z X y z
1 -2.555 0 0 2.5546 0 0 2.4174 0 0
2 0 -2.555 0 0 2.5546 0 0 2.4283 0
3 0 0 0 0 0 0 0 0 -1.825
4 0 0 -2.555 0 0 2.5546 0 0 0
5 0.0215 0 0 -0.013 0 0 -0.224 0 0
6 / / / 0 0 0 0 0 1.221
7 / / / / / / 0.051 0 0
8 / / / / / / 0 0 0.9u37

The calculations with the consistent mass matrices need some more modes, in order to obtain

participating masses greater then 0.90 at least in the x, y directions.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

29

Modal Participating Masses

SismiCad MdFem Lumped MdFem Consistent
Mode X y z y z X y z
1 1 0 0 0.99999 0 0 0.9035 0 0
2 0 1 0 1 0 0 0.9036 0
3 0 0 0 0 1 0 0 0.5101
4 0 0 0 0 0 0 0 0
5 / / / 0.00003 0 0 0.0077 0 0
6 / / / 0 0 0 0 0.2284
7 / / / / / 0.0004 0 0
8 / / / / / 0 0 0.1365
Sum 1 1 0 1 1 0.9035 | 0.9035 | 0.875

For a better reading, numbers lower then 1E-10 are written as zeros. The results are in good
agreement.

The next figures show the results in terms of shear forces Sx, Sy calculated with the RSA and the
displacements method, and the forces at the nodes: in this case of a single storey frame, the forces

at the nodes are equal to the shear forces.

> A=
% /
‘\ /
1 \‘% 1 ///
\ 4 / /
\‘\ Sx / //
; \'\ \\ ; /
\ \\ ./ / ay
.N\ 2 % 2 ?
Shear Sx % Sx Shear Sy é
\\\ .,2///
7‘\\\\
3 ¥ 3 F
1 1
4 Fy
‘e 2 ‘e P
¢’ ' 5
Comparisons of RSA results with displacements method
SismiCad Sapu MdFem MdFem
lumped Tumped lumped consistent
cQc cQc cQC cQc SRSS
Sx Sy Sy Sy Sy Sy Sx Sy Sx Sy
5.51 | 5.02 | 5.41 |5.01 5.01 5.01 5.01 | 5.601 | 4.51 | 5.00 | 4.51

The results obtained with the different programs are very close. The calculations performed with
the consistent mass matrices give lower forces, due to the smaller participating masses.

In this case the shear forces obtained with the SRSS combination are in very good agreement with

the CQC results.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

30

Let now control the results obtained with the forces method: this method is implemented in

MdFem, and the control is made only for the lumped mass matrices calculation.

Also in this case the two methods give the same results. In fact, using two extra decimal digits

compared to the table, the base forces

calculated with the displacements
method are:

Sx=2x5.534=11.068

Sy =2x5.007 =10.014

MdFem — Forces Method
File Antennas Pole 1
combinations of seismic forces
Node | C.Q.C. Force
| Fx Fy |
1 0.0000E+00 0.0000E+00
2 0.0000E+00 0.0000E+00
3 5.5343E+00 5.0071E+00
4 5.53U3E+00 5.0071E+00
base shear 1.1069E+01 1.0014E+01

6.3 Example 3 — Participant Masses 1
The structure is a single-span, two-storeys concrete frame, with the characteristics shown in the
next figure. The cross section is 0.8 m x 0.4 m. The horizontal beams have a vertical load of 15 kN/m.
The nodes at the base are completely restrained, while the others are completely free: there are a
total number of 24 dof.

ALV ET) e

T dof.=13+18 6 d.of =19+24 2‘
15kNim sl
e~ T) 1_ <
e 2 3 4 OI
- 15 kN/m 7%?0'8
. ol 4 3% l l l l l’ l &4 E = 32588108 kN/m?
15kl\l.-n_w_ bl dof =16 5 d.of =7=12 A=032m?
g 1 J1 = 0.00426667 m*
uanl . ; 5 J2 =0.01706667 m*
— o Jt=0.01169067 m*
v =01
p = 25 kN/m®
' Ll 4 s M = 25491996 kN/m?/ g
\ 3 ’V oo T g=19807m/s
Participant Masses 1 - Units: kN, m, s
The comparison of the results is shown below.
Fundamental periods T (s)
Mode SismiCad Sapu MdFem (lumped) MdFem
(consistent)
1 0.20048 0.2012 0.20122 0.1975
2 0.19895 0.1737 0.17378 0.1721
3 0.16792 0.1311 0.13118 0.1160
4 0.04979 0.0523 0.05231 0.0498
5 0.03258 0.03223 0.03223 0.0318
6 0.03255 0.02993 0.02993 0.0260
7 0.01455 0.01486 0.01486 0.0209
8 / / / 0.0160

The results of MdFem and Sap4 are identical, and those of SismiCad are very close.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

31

Modal Participation Factors

Sapd MdFem Lumped MdFem Consistent
Mode X y z X y z X y z
1 0 -4.896 0 0 4.896 0 0 4.890 0
2 5.196 0 0 -5.196 0 0 5.169 0 0
3 0 0 0 0 0 0 0 0 0
4 1.948 0 0 1.948 0 0 1.842 0 0
5 0 2.611 0 0 2.611 0 0 2.472 0
6 0 0 0 0 0 0 0 0 0
7 0 0 -5.413 0 0 5.413 0 0 2.003
8 / / / / / / 0 0 -4.434

For the calculations with the consistent mass matrices, one more mode have been calculated, in
order to obtain some more participating masses in the z direction.

The results of MdFem and Sap4 are identical.

Modal Participating Masses

SismiCad MdFem Lumped MdFem Consistent
Mode X y Z X y Z X y z
1 0 0.7870 0 0 0.7786 0 0 0.7765 0
2 0 0 0 0.8767 0 0 0.8677 0 0
3 0.8852 0 0 0 0 0 0 0 0
4 0.1148 0 0 0.1233 0 0 0.1102 0 0
5 0 0.2130 0 0 0.2214 0 0 0.1984 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0.9544 0 0 0.9514 0 0 0.1303
8 / / / / / / 0 0 0.6471
Sum 0.9999 1 0.9544 | 0.9999 1 0.9514 | 0.978 0.975 0.777

For a better reading, numbers lower then 1E-10 are written as zeros.

The results are in good agreement: again, with the consistent mass matrices the participating
masses are lower.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

32

The next figures show the results in terms of shear forces Sx, Sy calculated with the RSA and the
displacements method, and the forces at the nodes calculated by hand as differences of the shear

forces.
5 5
S 1=
‘x\N /
3] 3 ?l
\\\
\SX 6 ?
] - r—"]
iy o]]]
36 — P]
\.\m A~ ‘% 4 ?
\-\ \\SX / /
—]] -
T — o ; / Sy _—
%& L % %
1 N % 1./ /
_—] Sy
.\\ 3 \\ 5 /
.~ =
Shear Sx \ Sx Shear Sy /
s %
j.s ./
’ 5&
Fx
3 3
6 F
Fx
3 Fx 7] 3 Fy 7
1 1
4 Fx Fy
e S 'y S
o’ ¢’
Comparisons of RSA results with displacements method
SismiCad Sapt MdFem MdFem
lumped Tumped lumped consistent
cQc cQc SRSS cQcC SRSS cQc SRSS
Elem. Sx Sy Sx Sy Sx Sy Sx Sy Sx Sy Sx Sy Sx Sy
1, 2 | 30.0|28.8|30.0|28.5|30.0|28.5|30.0|28.5|30.0|28.5(29.6|28.2|29.6/28.1
3, 4 19.3|120.5|19.5|20.5(19.5|20.5|19.5|20.5|19.5|20.5|19.6|19.9|19.0 | 19.9

The results obtained with the different programs are very close, or identical. With the consistent

mass matrices the forces are slightly lower, due to the smaller participating masses.

In this case, again, the shear forces obtained with the SRSS combination are in very good agreement
with the CQC results: with the lumped mass matrices the results are the same, while with the
consistent mass matrices SRSS values are slightly lower.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

33

Let now control the results obtained with the forces method: this method is implemented
MdFem, and the control is made only for the lumped mass matrices calculation.

n

MdFem — Forces Method MdFem — Displacements Method
File Participant Masses 1L CQC Hand calculated forces
combinations of seismic forces From MdFem Llumped CQC
Node | C.Q.C. Force
| Fx Fy | Node Fx Fy
1 0.0000E+00 0.0000E+00 1 0.00 0.00
2 0.0000E+00 0.0000E+00 2 0.00 0.00
3 1.0907E+01 8.6260E+00 3 10.54 8.o04
4 1.0188E+01 7.U4505E+00 4 10.54 8.04
5 1.9517E+01 2.0496E+01 5 19.52 20.50
6 1.9517E+01 2.0496E+01 6 19.52 20.50
base shear 6.0129E+01 5.7069E+01

Also in this case, the base shears Sx, Sy, calculated with the forces method, are the same of those
calculated with the displacements method: in fact, using an extra decimal digit compared to the
table, the base forces calculated with the displacements method are:

Sx=30.06 x 2 =60.12
Sy=28.53x2=57.06
the two methods give the same results.

The 1° storey forces instead, with the forces method become asymmetric, though their average
values are very close to the correct values:

Sx: (10.907 + 10.188) / 2 = 10.55
Sy: (8.626 + 7.4505) / 2 = 8.04
As told in 5.4, the implemented method gives good results in some cases, but needs more insights.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 34

6.4 Example 4-PM_M1

The structure is a two-spans, two-storeys concrete frame, with the characteristics shown in the next
figure. The cross section is 0.8 m x 0.4 m and is oriented in different ways as shown in the figure.
The horizontal longest beams (with green colour) have a vertical load of 15 kN/m. The nodes at the
base are completely restrained, while the others are completely free.

i
1 VI
(e]
- 0.8
o] E =32533108 kNim®
o A =032 m?
3 15 k/m 15 flfm J1=0.00426667 m*
J2=0.01706667 m*
Jt= 001169067 m*
(=1 o€ 3 v =01
e 5] p = 25 k/m®
. s m = 2.5491996 kN/m*/ g
g = 9.807 mfs®
=| [l
4 sk m PM_M1 - untskn m, s
k 50 I3
The comparison of the results is shown below.
Fundamental periods T (s)
Mode SismiCad MdFem (lumped) MdFem (consistent)
1 0.20865 0.21984 0.21863
2 0.17227 0.17067 0.15699
3 0.11612 0.11991 0.11929
4 0.08944 0.09030 0.08535
5 0.05839 0.06502 0.06340
6 0.05660 0.06150 0.05551
7 0.03187 0.03353 0.03298
8 0.03125 0.03204 0.03014
9 0.01794 0.01874 0.02948
10 0.01781 0.01862 0.02516
11 0.01772 0.01853 0.02197
12 0.01760 0.01841 0.01959

The results of MdFem and SismiCad are close.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 35

Modal Participating Masses
SismiCad MdFem Lumped MdFem Consistent
Mode X y z X y Z X y z
1 0.8880 0 0 0.8772 0 0 0.8714 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0.8800 0 0 0.8640 0 0 0.8580 0
4 0 0 0 0 0 0 0 0 0
5 0.1119 0 0 0.1228 0 0 0.1144 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0.1200 0 0 0.1360 0 0 0.1263 0
8 0 0 0 0 0 0 0 0 0
9 0 0 0.9560 0 0 0.9497 0 0 0
10 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0.4863
12 0 0 0 0 0 00 0 0
Sum 0.9999 | 0.9999 | 0.9559 | 0.9999 | ©0.9999 | 0.9497 | 0.9859 | 0.9844 | 0.4864

For a better reading, numbers lower then 1E-10 are written as zeros. The results are in good
agreement.

The next figure shows the results in terms of shear forces Sx, Sy calculated with the RSA and the
displacements method.

4 Syz
E
-
ot
=
Sy1
=
=
e
—
=
Units: kM, m. s ‘# Units: kM, m, s
Comparisons of RSA results with displacements method
SismiCad MdFem MdFem
Shear lumped lumped consistent
forces cQcC cQc SRSS cQcC SRSS

Sx1 51.10 51.60 51.57 51.12 51.09

Sx2 33.42 34.21 34.23 33.69 33.71

Sy1 41.82 41.51 41.49 41.12 41.10

Sy2 27.65 27.96 27.98 27.55 27.57

The results obtained with the different programs are very close, with minimal differences.

In this example also with the consistent mass matrices the forces are practically the same.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 36

Let now control the results obtained with the forces method, comparing again the calculations
made with the lumped mass matrices and CQC combination (and MdFem program).

MdFem - Forces Method MdFem — Displacements Method
File Participant Masses 1L CQC Hand calculated forces
combinations of seismic forces From MdFem Llumped CQC
Node | C.Q.C. Force
| Fx Fy | Node Fx Fy
1 0.0000E+00 0.0000E+00 1 0.00 0.00
2 0.0000E+00 0.0000E+00 2 0.00 0.00
3 1.8117E+01 1.4388E+01 3 17.39 13.55
4 1.7731E+01 1.3940E+01 4 17.39 13.55
5 3.3804E+01 2.7500E+01 5 34.21 27.96
6 3.3539E+01 2.7192E+01 6 34.21 27.96
7 0.0000E+00 0.0000E+00 7 0.00 0.00
8 0.0000E+00 0.0000E+00 8 0.00 0.00
9 1.7924E+01 1.4164E+01 9 17.39 13.55
10 1.6853E+01 1.2933E+01 10 17.39 13.55
11 3.4207E+01 2.7961E+01 11 34.21 27.96
12 3.4207E+01 2.7961E+01 12 34.21 27.96
base shear 2.0638E+02 1.6604E+02

In this case again, the base shears Sx, Sy, calculated with the forces method, are the same of those
calculated with the displacements method whose values are:

Sx=51.60x4=206.4
Sy=4151x4=166.04

Also in this case the forces method leads to asymmetries, though their average values are close to
the correct values:

Sx: nodes 3,4,9,10: (18.117+17.731+17.924 + 16.853) /4 =17.656
Sx: nodes 5,6, 11, 12: (33.804 + 33.539 + 34.207 x 2) / 4 = 33.939

Sy: nodes 3,4,9,10: (14.388 + 13.940 + 14.164 + 12.933) / 4 = 13.856
Sy: nodes 5, 6,11, 12: (27.50 +27.192 + 27.961x2) /4 = 27.654

As told in 5.4, the implemented method gives good results in some cases, but needs more insights.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

37

7 Final Remarks

The work presented in this article does not contain anything new from the theoretical point of view,
but may be useful for didactical purposes, or even for real applications and research.

The comparisons made with different programs in the various examples, allows me to make some
considerations.

The eigenvalues, the eigenvectors and the participating masses have always been calculated with
minimal or no differences.

In the Response Spectrum Analysis, the displacements method, with the CQC combination, seems
to be the best choice: the results obtained with the different programs are in fact very close and
satisfactory. In spite of that, even with this procedure asymmetries may sometimes arise: such type
of examples have not been published in this work, but maybe they will be in the future.

The displacements method, with the SRSS combination, gives good results in some cases, but with
more exceptions. In the examples here presented it fails, for instance, in the Antennas Pole 1 case.
Actually, it is widely known that it can lead to wrong values, either underestimating or
overestimating the correct values [10].

The forces method gives good results in the first two examples, but in the other two some
asymmetries arise. Though the presented results are not bad, the implementation described in this
article is not as general as needed. As already told, the method needs some insights in order to
obtain a procedure of general validity from a mathematical point of view.

One final consideration concerns the use of consistent mass matrices. Though they require an extra
computational effort, it is a problem that concerns the computer's CPU and we can ignore it. But
they also require the calculation of more natural frequencies to obtain an adequate participating
mass, without appreciable improvements in the quality of the results.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 38

8 Bibliography

[1] Bathe K. J.: “Finite Element Procedures in Engineering Analysis”. Prentice Hall, 1982.

[2] Boreggio G., Bena S.: “Programma di calcolo SSPACE — Analisi modale di sistemi ad elevato
numero di gradi di liberta”. Lecture notes from University of Padua, 1985.

[3] Bish P., Carvalho E. et alii: “Eurocode 8: Seismic Design of Buildings - Worked examples”.
Workshop “EC8: Seismic Design of Buildings”, Lisbon, 2011.

[4] De Pisapia M.: “Earthquake — La guida pratica per I'analisi sismica delle strutture”. Private
Practice, 2017.

[5] D.M. 17.01.2018: “Aggiornamento delle <<Norme tecniche per le costruzioni>>". Supplemento
ordinario n°® 8 alla GAZZETTA UFFICIALE — Serie generale n° 42.

[6] Katsikadelis J. T.: “Dynamic Analysis of Structures”. Academic Press, Elsevier, 2020.
[7] Eurocode 8 (EN 1998): “Design of structures for earthquake resistance”.
[8] Serafini P.: “Semplice esempio numerico del metodo di analisi dinamica”. Appunti in rete, 2009.

[9] Varagnolo P.: “3-D Beam Finite Element Programming - A Practical Guide: Part 1 — Static
Analysis”. ResearchGate, 2021.

[10] Wilson E. L., Der Kiureghian A., Bayo P.: “A replacement for the SRSS method in seismic
analysis”. Earthquake Engineering and Structural Dynamics, vol. 9. John Wiley & Sons, 1981.

[11] Zienkiewicz O. C.: “The Finite Element Method”. Third Edition. Mc Graw Hill, 1977.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 39

9 Appendix A —Program Sspace

IN NO EVENT SHALL PAOLO VARAGNOLO BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE
OF THIS SOFTWARE AND ITS DOCUMENTATION. PAOLO VARAGNOLO SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE AND ACCOMPANYING
DOCUMENTATION PROVIDED HERE, IS PROVIDED "AS IS". PAOLO VARAGNOLO HAS NO OBLIGATION
TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

The program execution begins with the subroutine MainSub(), which reads the problem data from
a file named InFile, initializes some variables and then calls the subroutine Sspace() where the
eigenproblem is solved.

The variables are described and explained inside the subroutine Sspace(). For some variables it
may be useful to refer to [9].

The order and the type of the data is clear from the context, given the meaning of the variables.

Sub MainSub()

Dim Dummy, Title As String
Dim Filel As System.IO.StreamWriter = Nothing

Dim NumFile As Integer = FreeFile()
FileOpen(NumFile, InFile, OpenMode.Input)

Filel = My.Computer.FileSystem.OpenTextFileWriter(OuFile, True)

Title = LineInput(NumFile)
Filel.WriteLine(Title + vbCrLf)

Dummy = LineInput(NumFile)
NDOFT = Val(LineInput(NumFile))
Dummy = LineInput(NumFile)
NKGLO = Val(LineInput(NumFile))
Dummy = LineInput(NumFile)
NMGLO = Val(LineInput(NumFile))
Dummy = LineInput(NumFile)
NROOT = Val(LineInput(NumFile))

ReDim GLOBK(NKGLO), GLOBM(NMGLO), MAXAD(NDOFT + 1)

Dummy = LineInput(NumFile)
For Idofn = 1 To NDOFT + 1

MAXAD(Idofn) = Val(LineInput(NumFile))
Next Idofn

Dummy = LineInput(NumFile)
For i% = 1 To NKGLO

GLOBK(i%) = Val(LineInput(NumFile))
Next i%

Dummy = LineInput(NumFile)
For i% = 1 To NMGLO
GLOBM(i%) = Val(LineInput(NumFile))

Next i%

NITEM = 16

IFSS =1

IFPR = 0 'l 'flag for complete output (1) or compacted output (0)
RTOL = 0.000001

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 40

Call Sspace(Filel)

FileClose()
Filel.Close()

End Sub

9.1 Global scope variables

The next table shows the list of global scope variables. Any change of type from single to double or
vice versa involves different approximations in the calculations and consequently gives little
changes in the results.

Public
Public
Public
Public

Public
Public
Public
Public
Public

Errore As Boolean

InFile, OuFile, PrtString, myPath As String
NDOFT, NKGLO, NMGLO, MAXAD() As Integer
GLOBK(), GLOBM() As Double

MassC(21), RTOL, Gaccel As Double
CircFreq(), Frequency(), Period() As Single
NROOT, NITEM, IFSS, IFPR As Integer
Eigenvalues, IflLumped As Boolean

ModFile As String

9.2 Other Subroutines
The first subroutine in this paragraph is the Sspace() program core, which manages the
eigenproblem solution with the calls to the subroutines. The other subroutines follow, in no
particular order. The subroutines possibly presented within the text are part of the program and
will not be re-presented below.

Sub Sspace(Filel As StreamWriter)

Program to solve for the smallest eigenvalues and corresponding eigenvectors
in the generalized eigenproblem using the subspace iteration method

written by K. J. Bathe: "Finite Element Procedures in Engineering Analysis"

Prentice-Hall, 1982

revised and translated in vb.net by Paolo Varagnolo, 2020

Input variables

GLOBK(NKGLO)
GLOBM(NMGLO)
MAXAD(NDOFT + 1)

R(NDOFT, NC)
EIGV(NC)
TTCNDOFT)
WCNDOFT)
ARCNNC)
BRCNNC)
VEC(NC, NC)
D(NC)
RTOLV(NC)
BUP(NC)
BLO(NC)

stiffness matrix in compacted form

(global scope variable, already assembled)
mass matrix in compacted form

(global scope variable, already assembled)
vector containing the addresses of diagonal elements of GLOBK()
(global scope variable, already assembled)
eigenvectors on solution exit

eigenvalues on solution exit

working vector

working vector

working vector storing projection of GLOBK
working vector storing projection of GLOBM
working matrix

working vector

working vector

working vector

working vector

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 41

BUPC(NC) = working vector

NKGLO = number of elements below skyline of GLOBK()
(global scope variable, already assigned)
(global scope variable, already assigned)
NDOFT = total number of degrees of freedom = order of GLOBK(), GLOBM()

' NMGLO = number of elements below skyline of GLOBM()
! (global scope variable, already assigned)

NC = number of iteration vectors used, usually set to MIN(2*NROOT,
NROOT+8) ,
! cannot be larger then the number of mass degrees of freedom
NNC = NC * (NC + 1) / 2 dimension of storage vectors AR, BR
NROOT = number of required eigenvalues and eigenvectors
(global scope variable, already assigned)
RTOL = convergence tolerance on eigenvalues (1E-6 or smaller)

(global scope variable, already assigned)

NITEM = maximum number of subspace iterations permitted (usually set to 16)
the parameters NC and/or NITEM must be increased

if a Then solutions has Not converged

(global scope variable, already assigned)

NSMAX = maximum number of sweeps in Jacobi iteration
= flag for Sturm sequence check: = 0 --> no check; = 1 —-—> check
(global scope variable, already assigned)
IFPR = flag for intermediate printing: = ©® --> no check; = 1 —-—> check
(global scope variable, already assigned)
Dstif = scratch streamwriter to store stiffness matrix
Filel = streamwriter for output file

Output variables

EIGV(NROOT)
RCNDOFT, NROOT)

eigenvalues
eigenvectors

' IFSS

Dim NC, MassDOF, NNC, ij, Iconv, NSCH, NSMAX, N1, NC1, ND, ISH, Nite, Nei, Idofn
As Integer

Dim itemp As Integer

Dim i%, j%, 1%, ii%

Dim TOLJ, RT, MaxTol, ART, BRT, Dummy, Vnorm, Wnorm, Shift As Double

Dim Text As String

Dim ConvReached, Swapped As Boolean

MassDOF = CalculateMassDOF()

NC = Math.Min(2 * NROOT, NROOT + 8)
NC = Math.Min(NC, MassDOF)

NNC = NC * (NC + 1) / 2

Dim RCNDOFT, NC), TT(NDOFT), WCNDOFT), EIGV(NC), D(NC), VEC(NC, NC), ARCNNC),
BR(NNC) As Double
Dim RTOLV(NC), BUP(NC), BLO(CNC), BUPC(NC) As Double

TOLJ = 0.000000000001 'TOLERANCE FOR jACOBI ITERATION

If NROOT > NDOFT Then
Text = "The number of requested eigenvalues is greater then " + vbCrLf
Text += "the number of degrees of freedom in the model." + vbCrLf
Text += "Only " + NDOFT.ToString + " eigenvalues will be serched." + vbCrLf
MsgBox(Text, vbExclamation, "Warning")
Filel.WriteLine(Text)
NROOT = NDOFT
End If

If NROOT > MassDOF Then
Text = "The number of requested eigenvalues is greater then " + vbCrLf
Text += "the number of mass degrees of freedom." + vbCrLf
Text += "Only " + MassDOF.ToString + " eigenvalues will be serched." + vbCrLf
MsgBox(Text, vbExclamation, "Warning")
Filel.WriteLine(Text)
NROOT = MassDOF
End If

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 42

If IFPR <> 0 Then
Text = vbCrLf
Text += "global stiffness matrix in compacted form " + vbCrLf
For i% = 1 To NKGLO
Text += String.Format("{0,15}", GLOBK(i%).ToString("0.00000EOAE+OO")) +
vbCrLf
Next i%
Filel.WriteLine(Text)

Text = vbCrLf
Text += "global mass matrix in compacted form " + vbCrLf
For i% = 1 To NMGLO
Text += String.Format("{0,15}", GLOBM(i%).ToString("0.00000000E+00")) +
vbCrLf
Next i%
Filel.wWriteLine(Text)
End If

'Initialization
Iconv = 0

NSCH = 0

NSMAX = 12

N1 = NC + 1

NCl1 = NC -1

Dim Dstif As System.IO.StreamWriter = Nothing

Dim FileWork® As String = myPath + "WORKO" 'open a file where will be saved the
stiffness global matrix

If Dir(FileWorke) <> "" Then Kill(FileWork0)

Dstif = My.Computer.FileSystem.OpenTextFileWriter(FileWork®, True)

'write global stiffness matrix

For i% = 1 To NKGLO
Dstif.WriteLine(GLOBK(i%))

Next i%

Dstif.Close()

ReDim D(NC), R(NDOFT, NC) 'this set the arrays to zero

'establish starting iteration vectors
ND = Int(NDOFT / NC)
If NMGLO <= NDOFT Then
j% =0
For i% = 1 To NDOFT
ii% = MAXAD(i%)
R(i%, 1) = GLOBM(i%)
If GLOBM(i%) > 0 Then j% += 1
W(i%) = GLOBM(i%) / GLOBK(ii%)

Next i%
If NC > j% Then
Text = "The number of iteration vectors must not exceed the number of mass

degrees of freedom." + vbCrLf
MsgBox(Text, vbExclamation, "Warning")
Filel.WriteLine(Text)
End
End If
Else
For i% = 1 To NDOFT
ii% = MAXAD(i%)
R(i%, 1) = GLOBM(ii%)
W(i%) = GLOBM(ii) / GLOBK(ii)
Next i%
End If

1% = NDOFT - ND
For j% = 2 To NC
RT 0

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 43

vbCrLf

For i% =1 To 1%
If W(i%) >= RT Then

RT = W(i%)
ij = i%
End If

Next i%
For i% = 1% To NDOFT
If W(i%) > RT Then

RT = W(i%)
ij = i%
End If
Next i%
TT(§%) = ij
W(ij) = 0.0
1% —= ND
R(ij, j%) = 1.0
Next j%
PrtString = "Degrees of freedom excited by unit starting iteration vectors" +

Call PrintArray_1_10_Int(PrtString, TT, 2, NC)
Filel.WriteLine(PrtString)

'factorize matrix GLOBK() into (L)*(D)*(L(T))
ISH = 0
Call Decomp(ISH, Filel)
If Errore Then
Filel.Close() : Exit Sub
End If

'start of iteration loop

Nite = 0

ConvReached = False

Do While Iconv = 0 'it is an infinite loop, Iconv remains = 0. The exit from the

loop occurs when ConvReached becomes true

Nite += 1
If IFPR <> 0 Then
Text = vbCrLf
Text += "Iteration number: " + String.Format("{o,u4}",

Nite.ToString("###0")) + vbCrLf

Filel.WriteLine(Text)
End If

'calculate the projection of GLOBK and GLOBM
ij =0
For j% = 1 To NC
For k% = 1 To NDOFT
TT(k%) = R(K%, j%)
Next k%
Call REDBAK(TT, Filel)
For i% = j% To NC
ART = 0
For k% = 1 To NDOFT
ART += R(Kk%, i%) * TT(K%)
Next k%
ij += 1
AR(ij) = ART
Next i%
For k% = 1 To NDOFT
RCKk%, j%) = TT(k%)
Next k%
Next j%

If IFPR <> 0 Then
PrtString = vbCrLf
PrtString += "array TT() after REDBAK" + vbCrLf
Call PrintArray_1_10_Real(PrtString, TT, 1, NDOFT)
Filel.WriteLine(PrtString)

End If

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 44

ij =20
For j% = 1 To NC
Call MULT(TT, GLOBM, R, j%, NMGLO)
For i% = j% To NC
BRT = 0
For k% = 1 To NDOFT
BRT += R(K%, i%) * TT(k%)
Next k%
ij +=1
BR(ij) = BRT
Next i%
If Not ConvReached Then
For k% = 1 To NDOFT
R(k%, j%) = TT(Kk%)
Next k%
End If
Next j%

'solve for eigensystem of subspace operators
If IFPR <> 0 Then

Call PrintProjections(AR, BR, NC, Filel)
End If

Call Jacobi(AR, BR, VEC, EIGV, W, NC, NNC, TOLJ, NSMAX, IFPR, Filel)
If Errore Then

FileClose() : Exit Sub
End If

If IFPR <> 0 Then
Text = "AR and BR after Jacobi diagonalization"
Filel.wWriteLine(Text)
Call PrintProjections(AR, BR, NC, Filel)

End If

'arrange eigenvalues in ascending order
Swapped = True
Do Until Swapped = False
Swapped = False
ii =1
For i% = 1 To NC1
itemp = ii + N1 - i%
If EIGV(i% + 1) < EIGV(i%) Then
Swapped = True
Dummy = EIGV(i% + 1)
EIGV(i% + 1) = EIGV(i%)
EIGV(i%) = Dummy
Dummy = BR(itemp)
BR(itemp) = BR(ii)
BR(ii) = Dummy
For k% = 1 To NC
Dummy = VEC(k%, i% + 1)
VEC(K%, i% + 1) = VEC(k%, i%)
VEC(K%, i%) = Dummy
Next k%
End If
ii = itemp
Next i%
Loop

If IFPR <> 0 Then
Text = "Eigenvalues of AR - Lambda * BR" + vbCrLf
Call PrintArray_1_10_Real(Text, EIGV, 1, NC)
Filel.wWriteLine(Text)

End If

'calculate GLOBM times approximate or final eigenvectors
For i% = 1 To NDOFT
For j% = 1 To NC

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

45

TT(j%) = R(i%, j%)

Next j%
For k% = 1 To NC
RT =0

For 1% = 1 To NC
RT += TT(1%) * VEC(1%, k%)

Next 1%
R(i%, k%) = RT
Next k%

Next i%

'this is the real exit from the iteration loop
If ConvReached Then Exit Do

'check for convergence of eigenvalues

For i% = 1 To NC
RTOLV(i%) = Math.Abs(EIGV(i%) - D(i%)) / EIGV(i%)

Next i%

If IFPR <> 0 Then
Text = vbCrLf
Text += "Relative tolerance reached on eigenvalues." + vbCrLf
Call PrintArray_1_10_Real(Text, RTOLV, 1, NC)
Filel.WriteLine(Text)

End If

MaxTol = -9999
For i% = 1 To NROOT
If MaxTol < RTOLV(i%) Then MaxTol = RTOLV(i%)
Next i%
If MaxTol < RTOL Then
'convergence reached
Text = vbCrLf
Text += "Convergence reached for tolerance = " + String.Format("{0,12}",
RTOL.ToString("0.00000E+00")) '+ vbCrLf
Filel.wWriteLine(Text)
ConvReached = True 'Iconv =1
Else
If Nite >= NITEM Then
'convergence not reached
Text = vbCrLf
Text += "No convergence in maximum number of iteratioons permitted." +
vbCrLf
Text += "Current iteration values will be accepted." + vbCrLf
Text += "The Sturm sequence check is not performed." + vbCrLf
Filel.WriteLine(Text)
ConvReached = True 'Iconv = 2
IFSS = 0
Else
For i% = 1 To NC
D(i%) = EIGV(i%)
Next i%
End If
End If
Loop 'end of iteration loop

Text = vbCrLf

Text += "The calculated eigenvalues are:" + vbCrLf
Call PrintArray_1_10_Real(Text, EIGV, 1, NROOT)
Filel.WriteLine(Text)

Text = ""
Text += "The calculated eigenvectors are:" + vbCrLf
For Iroot = 1 To NROOT

Dim Dumm(NDOFT) As Double

For Idofn = 1 To NDOFT

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 46

Dumm(Idofn) = R(Idofn, Iroot)
Next Idofn
Call PrintArray_1_10_Real(Text, Dumm, 1, NDOFT)
Next Iroot
Filel.WriteLine(Text)

'calculate and print error norms

'read global stiffness matrix

Using sr As StreamReader = File.OpenText(FileWork®) 'stiffness global matrix

For i% = 1 To NKGLO
GLOBK(i%) = sr.ReadlLine
Next i%
End Using

For 1% 1 To NROOT
RT EIGV(1%)
Call MULT(TT, GLOBK, R, 1%, NKGLO)
Vnorm = 0
For i% = 1 To NDOFT
Vnorm += TT(i%) * TT(i%)
Next i%
Call MULT(W, GLOBM, R, 1%, NMGLO)
Wnorm = 0
For i% = 1 To NDOFT
TT(i%) —= RT * W(i%)
Wnorm += TT(i%) * TT(i%)

Vnorm = Math.Sqrt(Vnorm)
Wnorm = Math.Sqrt(Wnorm)

= Wnorm / Vnorm
Next 1%

If IFPR > 0 Then
Text = vbCrLf
Text += "Print error norms on the eigenvalues" + vbCrLf
Call PrintArray_1_10_Real(Text, D, 1, NROOT)
Filel.WriteLine(Text)

End If

'apply Sturm sequence check
If IFSS <> 0 Then 'IFSS is the flag for Sturm sequence check

Call SturmCheck(EIGV, RTOLV, BUP, BLO, BUPC, D, NC, Nei, RTOL, Shift, Filel)

If Errore Then
Filel.Close() : Exit Sub
End If
If IFPR > 0 Then
Text = vbCrLf
Text += "Check applied at shift: " + String.Format("{0,12}",
Shift.ToString("0.00000E+00")) '+ vbCrLf
Filel.WriteLine(Text)
End If

'shift matrix GLOBK
'read global stiffness matrix

Using sr As StreamReader = File.OpenText(FileWork0®) 'stiffness global matrix

file
For i% = 1 To NKGLO
GLOBK(i%) = sr.ReadlLine
Next i%
End Using

If NMGLO <= NDOFT Then
For i% = 1 To NDOFT
ii = MAXAD(i%)
GLOBK(ii) —-= GLOBM(i%) * Shift
Next i%
Else
For i% = 1 To NKGLO

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

47

GLOBK(i%) —-= GLOBM(i%) * Shift
Next i%
End If

'factorize shifted matrix
ISH = 1
Call Decomp(ISH, Filel)
If Errore Then

Filel.Close() : Exit Sub
End If

'count number of negative diagonal elements
NSCH =
For i% = 1 To NDOFT

ii MAXAD(i%)

If GLOBK(ii) < @ Then NSCH +=1
Next i%

In i o

If NSCH = Nei Then
Text = nn
Text += "We found the lowest: " + String.Format("{o,6u}",
NSCH.ToString("###0")) + " eigenvalues "
Text += "(" + NROOT.ToString + " had to be found)" + vbCrLf
Filel.WriteLine(Text)
Else
Text - nn
Text += "There are: " + String.Format("{0,u4}", (NSCH -
Nei).ToString("###0")) + " eigenvalues missing" + vbCrLf
Filel.WriteLine(Text)
End If
End If 'Sturm sequence check

'Write FREQUENCIES (ADDED BY PV)
If IFSS = 0 Then
Text = vbCrLf + " PRINT OF FREQUENCIES" + vbCrLf

Else
Text = " PRINT OF FREQUENCIES" + vbCrLf
End If
Text += vbCrLf
Text += " MODE CIRCULAR " + vbCrLf
Text += " NUMBER FREQUENCY FREQUENCY PERIOD" + vbCrLf
Text += " (RAD/SEC) (CYCLES/SEC) (SEC)" + vbCrLf
Text += n n

Filel.WriteLine(Text)

ReDim CircFreq(NROOT), Frequency(NROOT), Period(NROOT)

Dim TPI As Double = 8 * Math.Atan(1)

For i% = 1 To NROOT
CircFreq(i%) = Math.Sqrt(EIGV(i%)) 'circular frequency
Frequency(i%) = CircFreq(i%) / TPI 'frequency
Period(i%) = TPI / CircFreq(i%) 'period
Text = String.Format("{0,5}", i%.ToString("####0")) + " "
Text += String.Format("{0,17}", CircFreq(i%).ToString("E8"))
Text += String.Format("{0,17}", Frequency(i%).ToString("E8"))
Text += String.Format("{0,17}", Period(i%).ToString("E8"))
Filel.WriteLine(Text)

Next i%

Sub Decomp(ISH As Integer, Filel As StreamWriter)
'subroutine to factorize stiffness matrix GLOBK() into (L)*(D)*(L(T))

'In the original subroutine GLOBK, MAXAD, NDOFT are formal arguments, but here
these variables have a global scope

Dim KN, KL, KU, KH, IC, KLT, KI, ND, KK As Integer
Dim K%

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 48

Dim Varl, Var2 As Double
Dim Text As String

If NDOFT = 1 Then Return

1 To NDOFT
MAXAD(n%)

KN + 1

KU = MAXAD(n% + 1) - 1
KH = KU - KL

If KH > 0 Then

k% =

For n%
KN
KL

For j% = 1 To KH
IC +=1
KLT -= 1
KI = MAXAD(k%)
ND = MAXAD(k% + 1) — KI - 1
If ND > 0 Then
KK = Math.Min(IC, ND)
Varl = 0
For 1% = 1 To KK
Varl += GLOBK(KI + 1%) * GLOBK(KLT + 1%)
Next 1%
GLOBK(KLT) -= Varl
End If
k% += 1
Next j%
End If
If KH >= 0 Then
k% = n%
Var2 =
For KK KL To KU
k% —= 1
KI = MAXAD(k%)
Varl = GLOBK(KK) / GLOBK(KI)
If Math.Abs(Varl) > 10000000.0 Then
Text = vbCrLf
Text += "Stop - Sturm sequence check failed because of multiplier

|l <)

growth" + vbCrLf
Text += "for column number " + n%.ToString + ". Multiplier = " +
String.Format("{0,12}", Varl.ToString("0.00000E+00"))
MsgBox(Text, vbExclamation, "Warning")
Filel.WriteLine(Text)
Errore = True : Exit Sub
End If
Var2 += Varl * GLOBK(KK)
GLOBK(KK) = Varil
Next KK
GLOBK(KN) -= Var2
End If

If GLOBK(KN) <= O Then
If ISH = 0 Then
Text = vbCrLf
Text += "Stop - Stiffness matrix not positive definite." + vbCrLf
Text += "non positive pivot for equation " + n%.ToString + ". Pivot =
" + String.Format("{0,12}", GLOBK(KN).ToString("0.00000E+00"))
MsgBox(Text, vbExclamation, "Warning")
Filel.WriteLine(Text)
Errore = True : Exit Sub
Else
If GLOBK(KN) = @ Then GLOBK(KN) = —-0.0000000000000001
End If
End If
Next n%

End Sub

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 49

Sub REDBAK(ByRef Vett() As Double, Filel As StreamWriter)
'subroutine to reduce and back-substitute iteration vectors

'In the original subroutine GLOBK, MAXAD, NDOFT are formal arguments, but here
these variables have a global scope

Dim KL, KU As Integer
Dim k%, n%
Dim Varl As Double

1 To NDOFT
KL MAXAD(n%) + 1
KU MAXAD(n% + 1) - 1
If (KU - KL) >= 0 Then
k% = n%
Varl = 0
For kk = KL To KU
k% —= 1
Varl += GLOBK(kK) * Vett(k%)
Next kk
Vett(n%) -= Varl
End If
Next n%

For n%

For n% = 1 To NDOFT

k% = MAXAD(n%)

Vett(n%) = Vett(n%) / GLOBK(k%)
Next n%

If NDOFT = 1 Then Return

n% = NDOFT
For 1% 2 To NDOFT
KL MAXAD(n%) + 1
KU MAXAD(n% + 1) - 1
If (KU - KL) >= 0 Then
k% = n%
For kk = KL To KU
k% —= 1
Vett(k%) —= GLOBK(KK) * Vett(n%)
Next kk
End If
n% —-= 1
Next 1%

End Sub

Sub MULT(ByRef TT() As Double, Vett() As Double, RR(,) As Double, Icolu As Integer,
MaxInd As Integer)

'subroutine to evaluate product of Vett() times the Icolu-th column of RR(,) and
store result in TT()

'Vett() can be the global Stiffness Matrix or the global Mass Matrix

'MaxInd is the number of elements in the Stiffness Matrix (NKGLO) or Mass Matrix
(NMGLO)

'In the original subroutine MAXAD, NDOFT are formal arguments, but here these
variables have a global scope

Dim KL, KU, II As Integer
Dim Varl, Var2 As Double

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 50

ReDim TT(NDOFT)

If MaxInd = NDOFT Then
'Llumped mass matrix
For i% = 1 To NDOFT
TT(i%) = Vett(i%) * RR(i%, Icolu)

Next i%

Return
End If
'consistent mass matrix or stiffnes matrix
For i% = 1 To NDOFT

KL = MAXAD(i%)

KU = MAXAD(i% + 1) - 1

IT = i% + 1

Varl = RR(i%, Icolu)
For kk = KL To KU
II =1
TT(II) += Vett(kk) * Varl
Next Kk
Next i%

If NDOFT = 1 Then Return

2 To NDOFT

KL = MAXAD(i%) + 1

KU MAXAD(i% + 1) - 1
If KU - KL >= 0 Then
II i%

For i%

KL To KU
IT =1
Var2 += Vett(kk) * RR(II, Icolu)
Next Kk
TT(i%) += Var2
End If
Next i%

End Sub

Sub PrintProjections(AR() As Double, BR() As Double, NC As Integer, Filel As

StreamWriter)
'print projections of stiffness and mass matrix

Dim Text As String
Dim Itemp, N1 As Integer
Dim ii%

N1 =NC + 1

Text = vbCrLf
Text += "Projection of stiffness matrix" + vbCrLf
ii% =1
For i% = 1 To NC
Itemp = ii% + NC - i%
Call PrintArray_1_10_Real(Text, AR, ii%, Itemp)
ii% += N1 - i%
Next i%
Text += "Projection of mass matrix" + vbCrLf
ii% =1
For i% = 1 To NC
Itemp = ii% + NC - i%
Call PrintArray_1_10_Real(Text, BR, ii%, Itemp)
ii% += N1 - i%
Next i%
Filel.WriteLine(Text)

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

51

End Sub

Sub Jacobi(ByRef A() As Double, ByRef B() As Double, ByRef X(,) As Double, ByRef
EIGV() As Double, ByRef D() As Double, NC As Integer,
NWA As Integer, TOLJ As Double, NSMAX As Integer, IFPR As Integer, Filel As
StreamWriter)

'solve the generalized eigenproblem using the generalized Jacobi iteration

Dim Text As String

Dim nl, ii, Nsweep, nr, jpl, jml, 1jk, jj, kpl, kml, jk, kk, iml, ij, ik, 1ji, ki
As Integer

Dim ji, ki, 1kj As Integer

Dim Eps, EptolA, EptolB, AKK, AJJ, AB, Check, SQCH, D1, D2, DEN, CA, CG As Double

Dim AJ, BJ, AK, BK, xj, xk, Tol, Dif, EpsA, EpsB, BB, Dummy As Double

Dim ConvReached As Boolean

nl NC + 1
ii =1
For i% = 1 To NC
If A(ii) <= 0 Or B(ii) <= @ Then
Text = vbCrLf
Text += "Error: solution stop" + vbCrLf
Text += "matrices not positive definite" + vbCrLf
Text += "Index: " + ii.ToString + vbCrLf

Text += "Stiffness = " + String.Format("{0,12}",
ACii).ToString("0.0000E+00")) + vbCrLf
Text += "Mass = " + String.Format("{0,12}",

B(ii).ToString("0.0000E+0EO")) + vbCrLf
Filel.WriteLine(Text)
Errore = True : Exit Sub
End If

D(i%) = A(ii) / B(ii)
EIGV(i%) = D(i%)
ii += nl1 - i%

Next i%

ReDim X(NC, NC)
For i% = 1 To NC

X(i%, i%) =1
Next i%

If NC = 1 Then Exit Sub

'initialize sweep counter and begin iteration
Nsweep = 0
nr = NC - 1
Do While Nsweep < NSMAX
Nsweep += 1
If IFPR <> 0 Then
Text = vbCrLf

Text += "Jacobi subroutine: sweep no. " + Nsweep.ToString + vbCrLf
Filel.wWriteLine(Text)
End If

'check if present off-diagonal element is large enough to require zeroing
Eps = (0.01 " Nsweep) " 2
For j% = 1 To nr

3pl = g% + 1
iml = j% - 1
1jk = jml * NC - Int(jml * j% / 2)

33 = Uk + 3%
For k% = jpl To NC
kpl = K% + 1

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 52

kml = k% - 1

jk = 1jk + K%

Kk = kml * NC - IntCkml * k% / 2) + k%
EptolA = (AC(GK) * A(FK)) / (A(G3) * ACKK))

EptolB = (B(jK) * B(jK)) / (B(jj) * B(kK))
If EptolA >= Eps Or EptolB >= Eps Then

'if zeroing is required, calculate the rotation matrix elements CA

and CG
AKK = A(CKK) * B(jk) - B(kk) = A(jk)
AJJ = A(jj) * B(jK) - B(jj) * A(jk)
AB = A(jj) * B(kk) - ACkK) * B(jj)
Check = (AB * AB + U4 * AKK * AJJ) / U
If Check < 0 Then
Text = vbCrLf
Text += "Error: solution stop" + vbCrLf

Text += "matrices not positive definite" + vbCrLf

Filel.WriteLine(Text)
Errore = True : Exit Sub
End If
SQCH = Math.Sqrt(Check)

D1 = AB / 2 + SQCH
D2 = AB / 2 - SQCH
DEN = D1
If Math.Abs(D2) > Math.Abs(D1) Then DEN = D2
If DEN = 0 Then
CA =0
CG = -A(jK) / A(KK)
Else
CA = AKK / DEN
CG = -AJJ / DEN
End If

'perform the generalized rotation, to zero the present off-

diagonal element
If NC - 2 <> 0 Then
If jml - 1 >= 0 Then
For i% = 1 To jml
iml = i% - 1

ij = iml * NC - Int(iml * i% / 2) + j
ik = iml * NC - Int(iml * i% / 2) + k
AJ = A(ij)

BJ = B(ij)

AK = A(ik)

BK = B(ik)

ACij) = AJ + CG * AK

B(ij) = BJ + CG * BK

ACik) = AK + CA * AJ

B(ik) = BK + CA * BJ

Next i%

End If
If kpl - NC <= 0 Then

1ji = jml *» NC - Int(jml * j% / 2)
1ki = kml * NC - Int(kml * k% / 2)
For i% = kpl To NC
ji = 1ji + i%
ki = ki + i%
AJ = A(ji)
BJ = B(ji)
AK = A(ki)
BK = B(ki)
A(ji) = AJ + CG * AK
B(ji) = BJ + CG * BK
ACki) = AK + CA * AJ
B(ki) = BK + CA * BJ
Next i%
End If

If jpl - kml <= 0@ Then
1ji = jml * NC - Int(jml * j% / 2)
For i% = jpl To kml

® o0

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

53

ji = 131 + i%
iml = i% - 1

ik = iml * NC - Int(diml * i% / 2) + k%
AJ = A(ji)
BJ = B(ji)
AK = A(ik)
BK = B(ik)
A(ji) = AJ + CG * AK
B(ji) = BJ + CG * BK
AC(ik) = AK + CA * AJ
B(ik) = BK + CA * BJ
Next i%
End If
End If
AK = A(CkK)
BK = B(kk)
ACKK) = AK + 2 * CA * A(JK) + CA *» CA * A(jj)
B(kk) = BK + 2 = CA = B(jKk) + CA * CA = B(jj)
A(jj) += 2 » CG * A(jk) + CG * CG * AK
B(jj) += 2 * CG * B(jK) + CG * CG * BK
A(jk) = 0
B(jk) = 0
'update the eigenvector matrix after each rotation
For i% = 1 To NC
xj = X(i%, j%)
xk = X(i%, k%)
X(i%, j%) = xj + CG * xk
X(i%, k%) = xk + CA * xj
Next i%
End If 'If EptolA >= Eps Or EptolB >= Eps
Next k%

Next j%

'update the eigenvalues after each sweep

ii =1

For i% = 1 To NC

If A(ii) <= 0 Or B(ii) <= 0 Then

Text = vbCrLf
Text += "Error: solution stop" + vbCrLf
Text += "matrices not positive definite" + vbCrLf
Text += "Index: " + ii.ToString + vbCrLf

Text += "Stiffness = " + String.Format("{0,12}",
A(Cii).ToString("0.0000E+00")) + vbCrLf
Text += "Mass = " + String.Format("{0,12}",

B(ii).ToString("0.0000E+0O")) + vbCrLf
Filel.WriteLine(Text)
Errore = True : Exit Sub

End If
EIGV(i%) = A(Cii) / B(ii)
ii += nl - i%

Next i%

If IFPR <> 0 Then
Text = vbCrLf
Text += "Current eigenvalues in Jacobi are:" + vbCrLf
Call PrintArray_1_10_Real(Text, EIGV, 1, NC)
Filel.WriteLine(Text)

End If

'check for convergence
Dim EigenOK As Boolean = True
For i% = 1 To NC
Tol = TOLJ * D(i%)
Dif = Math.Abs(EIGV(i%) - D(i%))
If Dif > Tol Then
EigenOK = False
Exit For
End If
Next i%

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 54

ConvReached = True
Eps = TOLJ " 2
EpsA 1.0E-20
EpsB = 1.0E-20
If EigenOK Then
'check all off-diagonal elements to see if another sweep is required

EpsB = 1.0E-50
For j% = 1 To nr
jml = j% - 1
jpl = j% + 1
1kj = jml * NC - Int(jml * j% / 2)

jj = WKkj + 3%
For k% = jpl To NC
kml = k% - 1
jk = 1kj + k%
kk = kml * NC - Int(Ckml * k% / 2) + k%
Dummy = CACGK) * AC§K)) / CACGj) * ACKK))
If EpsA < Dummy Then EpsA = Dummy
Dummy = (B(jk) * B(jKk)) / (B(jj) * B(kK))
If EpsB < Dummy Then EpsB = Dummy
Next k%
Next j%
Else
1280 stuff
End If

If EpsA > Eps Or EpsB > Eps Then
ConvReached = False
End If

'update D matrix and start a new sweep, if allowed
'280 stuff: an extra D matrix update can be made, but I admit this for a
better readability of the program
For i% = 1 To NC
D(i%) = EIGV(i%)
Next i%

If ConvReached Then
'fill out bottom triangle of resultant metrices and scale eigenvectors

ii =1
For i% = 1 To NC
BB = Math.Sqrt(B(ii))

For k% = 1 To NC
X(ks%, i%) = X(k%, i%) / BB

Next k%
ii += nl - i%

Next i%

Exit Do

End If
Loop

End Sub

Sub SturmCheck(EIGV() As Double, RTOLV() As Double, BUP() As Double, BLO() As Double,
BUPC() As Double, NEIV() As Double,
NC As Integer, ByRef nei As Integer, RTOL As Double, ByRef Shift As
Double, Filel As StreamWriter)

'subroutine to evaluate shift for Sturm sequence check

Dim NROOTtmp, LM, 11 As Integer
Dim 1%, i%

Dim Ftol As Double

Dim Text As String

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 55

Ftol = 0.01
=1

For i% To NC
BUP(i%) = EIGV(i%) * (1 + Ftol)
BLO(i%) = EIGV(i%) * (1 - Ftol)
Next i%
NROOTtmp = ©

For i% = 1 To NC
If RTOLV(i%) < RTOL Then NROOTtmp += 1

Next i%

If NROOTtmp < 1 Then
Text = vbCrLf
Text += "Error: solution stop in SturmCheck" + vbCrLf
Text += "no eigenvalues found." + vbCrLf
Filel.WriteLine(Text)
Errore = True : Exit Sub

End If

If NROOTtmp < NROOT Then NROOT = NROOTtmp

'find upper bounds on eigenvalues clusters
For i% = 1 To NROOTtmp

NEIV(i%) = 1
Next i%
If NROOTtmp = 1 Then
BUPC(1) = BUP(1)
LM =1
1% =1
i% = 2
Else
1% =1
i% = 2

Do While i% <= NROOTtmp
If BUP(i% - 1) > BLO(i%) Then
NEIV(1%) += 1
i+=1
Else
BUPC(1%) = BUP(i% - 1)
If i% <= NROOTtmp Then

1% += 1
i% += 1
If i% > NROOTtmp Then BUPC(1%) = BUP(i% - 1)
End If
End If
Loop
LM = 1%

End If

If NROOTtmp <> NC Then
Do While NROOTtmp < NC
If BUP(i% - 1) <= BLO(i%) Then Exit Do
If RTOLV(i%) >= RTOL Then Exit Do
BUPC(1%) = BUP(i%)
NEIV(1%) += 1
NROOTtmp += 1
i% += 1
Loop
End If

'find shift

If IFPR > 0 Then
Text = vbCrLf
Text += "Upper bounds of eigenvalue clusters" + vbCrLf
Call PrintArray_1_10_Real(Text, BUPC, 1, LM)
Filel.WriteLine(Text)
Text = vbCrLf
Text += "Number of eigenvalues in each cluster" + vbCrLf

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

56

Call PrintArray_1_10_Int(Text, NEIV, 1, LM)

Filel.WriteLine(Text)
End If
1t=M-1
If LM > 1 Then

Do Until 1% =1

For i% = 1 To 11
NEIV(1%) += NEIV(i%)

Next i%

1% —=1

1 =1
Loop

End If

If IFPR > 0 Then
Text = vbCrLf
Text += "Number of eigenvalues less then upper bounds" + vbCrLf
Call PrintArray_1_10_Int(Text, NEIV, 1, LM)
Filel.WriteLine(Text)

End If

1% = 0
i% = 0
Do While i% < LM

i% += 1

1% += 1

If NEIV(i%) >= NROOTtmp Then Exit Do
Loop
Shift
nei =

= BUPC(1%)
NEIV(1%)

End Sub

Function CalculateMassDOF()
'calculate the number of mass degrees of freedom
'mass matrix GLOBM and MAXAD have a global scope

Dim Index As Integer
CalculateMassDOF = 0

If NMGLO = NDOFT Then
'Llumped mass matrix
For Idofn = 1 To NDOFT
If GLOBM(Idofn) <> 0 Then CalculateMassDOF += 1
Next Idofn
Else
'consistent mass matrix
For Idofn = 1 To NDOFT
Index = MAXAD(Idofn)
If GLOBM(Index) <> 0 Then CalculateMassDOF += 1
Next Idofn
End If

End Function

Sub PrintArray_1_10_Int(ByRef Text As String, Goofy() As Double, First As Integer,
Last As Integer)
'add to Text the 1 dimensional array Goofy, in clusters of 10 integer numbers in
every row
'starting from First element, to Last element

Dim Ntens, il, i2 As Integer

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 57

Ntens = Int((Last - First) / 10)
i2 = First - 1

If Ntens > 0 Then
For Itens = 1 To Ntens
il = 10 * (Itens - 1) + First
i2 =41 +9
For Ielem = il To i2 - 1
Text += String.Format("{0,5}", Goofy(Ielem).ToString("####0"))
Next Ielem
Text += String.Format("{0,5}", Goofy(i2).ToString("####0")) + vbCrLf
Next Itens
End If

'print last elements
Dim Nelem = (Last - First) + 1 - 10 * Ntens

i2 +1
il + Nelem - 1

il
i2

If Nelem > 0 Then
For Ielem = il To i2 - 1
Text += String.Format("{0,5}", Goofy(Ielem).ToString("####0"))
Next Ielem
Text += String.Format("{0,5}", Goofy(i2).ToString("####0")) '+ vbCrLf
End If

End Sub

Sub PrintArray_1_10_Real(ByRef Text As String, Goofy() As Double, First As Integer,
Last As Integer)
'add to Text the 1 dimensional array Goofy, in clusters of 10 real numbers in
every row
'starting from First element, to Last element

Dim Ntens, il, i2 As Integer

Ntens = Int((Last - First) / 10)
i2 = First - 1

If Ntens > 0 Then
For Itens = 1 To Ntens
il = 10 * (Itens - 1) + First
i2 = i1 + 9
For Ielem = il To i2 - 1
Text += String.Format("{0,12}", Goofy(Ielem).ToString("0.0000E+0O"))
Next Ielem
Text += String.Format("{0,12}", Goofy(i2).ToString("0.000OE+00")) + vbCrLf
Next Itens
End If

'print last elements
Dim Nelem = (Last - First) + 1 - 10 * Ntens

i2 +1
il + Nelem - 1

il
i2

If Nelem > 0 Then
For Ielem = il To i2 - 1
Text += String.Format("{0,12}", Goofy(Ielem).ToString("0.0000E+0O"))
Next Ielem
Text += String.Format("{0,12}", Goofy(i2).ToString("0.000OE+00")) + vbCrLf
End If

End Sub

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 58

10 Appendix B — Program MdFem

IN NO EVENT SHALL PAOLO VARAGNOLO BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE
OF THIS SOFTWARE AND ITS DOCUMENTATION. PAOLO VARAGNOLO SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE AND ACCOMPANYING
DOCUMENTATION PROVIDED HERE, IS PROVIDED "AS IS". PAOLO VARAGNOLO HAS NO OBLIGATION
TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

The routines that have not yet been presented are listed hereunder. Some missing routines may be
found in [9].

The program execution begins with the subroutine MDfem Execute, which initializes the variables,
reads the problem data, calculates the elements’ local axes and finally calls the subroutine
SubSpace where the dynamic analysis is performed.

The subroutine that reads the problem data will not be presented, for the aim of this work is to
focus on the substance of FEM programming. The program can nevertheless be used, with the data
directly inserted in a specifically re-written subroutine ReadMdFemFile, presented in §10.1: the
data are those of example Participant Masses 1 in §6.3 (with lumped mass matrix and CQC
combination). Data input is usually performed in a graphic pre-processor environment, that records
all the values in a file, respecting precise specifications: describing and listing these subroutines
would have required a discussion that is beyond the scope of this work.

Sub MDfem_Execute(dtmStart As Date)
Dim x1, x2, yl, y2, z1, z2 As Double
FileClose()
Call InitVariables()
Call ReadMdFemFile()
'calculate transformation T matrix for all the elements: Tmat(,,)
For Ielem = 1 To Nelem

x1 = Xcoor(Incl(Ielem)) : yi
x2 = Xcoor(Inc2(Ielem)) : y2

Ycoor(Incl(Ielem)) : z1
Ycoor(Inc2(Ielem)) : z2

Zcoor(Incl(Ielem))
Zcoor(Inc2(Ielem))

Call LocalAxes_Vitaliani_PV(Ielem, x1, yl, zl, x2, y2, z2)
Next Ielem

If Eigenvalues Then
Call SubSpace() 'calculate vibration modes
End If
Call MDFEM(dtmStart) 'calculate FEM static analysis

End Sub

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 59

10.1 Input data

Sub ReadMdFemFile ()

'this is not the real reading routine:

'it only sets the data for the tutorial "Participant Masses 1L CQC" example

Dim Icase, Ielem, Ipoin As Integer

RTOL = 0.000001
NITEM = 16

IFSS = 1
IFPR = 0
Titl$ = "Participating Masses 1L CQC - units: kN, m, s"
Npoin = 6
Nelem = 6
Ncase = 2
Ntype = 2
IFPOS =1
Eigenvalues = True
NROOT = 7
IfLumped = True
NITEM = 16
IFSS = 1
IFPR = 0
Gaccel = 9.807
e e
Nmats = 2
NCOMB = 0
Ngaps = 0
Call MdFemArrayDimensions ()
'nodal coordinates
Xcoor = {0, 0, 5, 0, 5, 0, 5}
Ycoor = {0, 0, O, O, O, O, O}
Zcoor = {0, O, O, 3, 3, 6, 6}
'fixity codes
Iffix(l) =1 : Iffix(2) =1
Iffiy(l) = 1 : Iffiy(2) =1
Iffiz (1) 1 : Iffiz(2) =1
Ifrxx(l) =1 : Ifrxx(2) =1
Ifryy(l) =1 : Ifryy(2) =1
Ifrzz(l) =1 : Ifrzz(2) =1
For Ipoin = 1 To Npoin
IDDOF (1, Ipoin) = Iffix(Ipoin)
IDDOF (2, Ipoin) = Iffiy(Ipoin)
IDDOF (3, Ipoin) = Iffiz(Ipoin)
IDDOF (4, Ipoin) = Ifrxx(Ipoin)
IDDOF (5, Ipoin) = Ifryy(Ipoin)
IDDOF (6, Ipoin) = Ifrzz(Ipoin)
Next Ipoin
'properties
PROPS (1, 1) = 32588108.0 'Young modulus
PROPS (1, 2) = 0.32 'Area
PROPS (1, 3) = 0.01706667 'Jx
PROPS (1, 4) = 0.00426667 'Jy
PROPS (1, 5) =0 'Width (only for Winkler elements)
PROPS (1, 6) = 25.0 'Weight density
PROPS (1, 7) = 2.5491996 'Mass density
PROPS (1, 8) = 0.01169067 'torsional inertia
PROPS (1, 9) = 0.1 'Poisson ratio

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 60

PROPS (1, 10) = 0.5 * PROPS(1, 1) / (1 + PROPS(1l, 9)) 'G modulus

TrazFlag(l) = 0 'not an only tension element
PROPS (Nmats, = PROPS (1, 1)
PROPS (Nmats, = PROPS (1, 2)

= 0.00426667 'Jx
= 0.01706667 'Jy

(1
(2
PROPS (Nmats, 3
PROPS (Nmats, 4
PROPS (Nmats, 5
PROPS (Nmats, 6
(7

(8

(9

1

S

PROPS (Nmats,
TrazFlag (Nmat

) = PROPS (1, 10)
= TrazFlag (1l

—_— O— —— — — — < — —
Il

= PROPS (1, 5)

= PROPS (1, 6)

PROPS (Nmats, PROPS (1, 7)
PROPS (Nmats, = PROPS (1, 8)
PROPS (Nmats, = PROPS (1, 9)
)

'element definition
NelOnlyTraz = 0

Mater = {0, 1, 1, 1, 1, 2, 2}
Incl = {0, 1, 2, 3, 4, 3, 5}
Inc2 = {0, 3, 4, 5, 6, 4, 6}

'loads data
Icase =1
Titl$ (Icase) = "C=1 - Gl: own weights"
Gravity Case(Icase) = -3
Icase = 2
Titl$ (Icase) = "C=2 - G2: permanent LOADS"
For Ielem = 5 To 6
LoadType (Icase, Ielem) = 1
Dload (Icase, Ielem, 1) = 0 'x load at node i
Dload(Icase, Ielem, 2) = 0 'y load at node 1
Dload (Icase, Ielem, 3) = -15.0 'z load at node i
Dload(Icase, Ielem, 4) = Dload(Icase, Ielem, 1) 'x load at node j
Dload (Icase, Ielem, 5) = Dload(Icase, Ielem, 2) 'y load at node j
Dload(Icase, Ielem, 6) = Dload(Icase, Ielem, 3) 'z load at node j

Next Ielem

'Spectrum data

NpoiSpec = 44

DampCsi = 0.05

BehFact = 1.0

IfCQC = True

Ifspe =1

ReDim Spectrum (NpoiSpec, 2)

Spectrum = {
{0.0, 0.0, 0.0},
{0.0, 0.00E+00, 0.146},
{0.0, 0.242, 0.257},
{0.0, 0.363, 0.257},
{0.0, 0.727, 0.257},
{0.0, 0.787, 0.238},
{0.0, 0.847, 0.221},
{0.0, 0.907, 0.206},
{0.0, 0.967, 0.193},
{0.0, 1.03, 0.182},
{0.0, 1.09, 0.172},
{0.0, 1.15, 0.163},
{0.0, 1.21, 0.155},
{0.0, 1.27, 0.148},
{0.0, 1.33, 0.141},
{0.0, 1.39, 0.135},
{0.0, 1.45, 0.129},
{0.0, 1.51, 0.124},
{0.0, 1.57, 0.119},
{0.0, 1.63, 0.115},
{0.0, 1.69, 0.111},
{0.0, 1.75, 0.107},
{0.0, 1.81, 0.103},
{0.0, 1.87, 0.1},

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

61

{0.0, 1.93, 0.097},

{0.0, 2.07, 0.0839},
{0.0, 2.22, 0.0733},
{0.0, 2.36, 0.0646},
{0.0, 2.5, 0.0574},

{0.0, 2.65, 0.0513},
{0.0, 2.79, 0.0462},
{0.0, 2.94, 0.0418},
{0.0, 3.08, 0.0379},
{0.0, 3.22, 0.0346},
{0.0, 3.37, 0.0317},
{0.0, 3.51, 0.0292}%,
{0.0, 3.66, 0.0269},
{0.0, 3.8, 0.0249},

{0.0, 3.94, 0.0231},
{0.0, 4.09, 0.0215},
{0.0, 4.23, 0.0201},
{0.0, 4.38, 0.0188},
{0.0, 4.52, 0.0176},
{0.0, 4.66, 0.0165},
{0.0, 4.81, 0.0156}

}

End Sub

10.2 Global scope variables
The next table shows the list of global scope variables.
The global scope variables listed in the MdFem program published in [9] must be added to these.

Any change of type from single to double or vice versa involves different approximations in the
calculations and consequently gives little changes in the results.

Public dtmStart, dtmEnd As Date

Public GLOBM(), MassC(21), RTOL, Gaccel As Double

Public CircFreq(), Frequency (), Period() As Double

Public NMGLO, NROOT, NITEM, IFSS, IFPR As Integer

Public Eigenvalues, IfLumped As Boolean

Public ModFile As String

Public PartFact(,), PartMas(,), TotalMass () As Double

Public NodalMass (), ModalShape(,,), SpecDisp(,,), CombStruDisp() As Double
Public Roij(,) As Double

Public ShearForcesCQC (Npoin, NDIME), ShearForcesSRSS (Npoin, NDIME) As Double
Public SeismicForceCQC(,), SeismicForceSRSS(,) As Double

Public ValAg g, ValF0, ValTc, DampCsi, S s, C c, S t, ModalAcc() As Double
Public IfCQC As Boolean

Public SpeFile As String

Public Ifspe, NpoiSpec As Integer

Public BehFact, Spectrum(,) As Single

10.3 Inizializations and array dimensioning

Sub MdFemArrayDimensions ()
'main arrays dimensioning

ReDim Iffix (Npoin + Ngaps), Iffiy(Npoin + Ngaps), Iffiz (Npoin + Ngaps), Ifrxx (Npoin
+ Ngaps), Ifryy(Npoin + Ngaps), Ifrzz(Npoin + Ngaps)

ReDim Xcoor (Npoin + Ngaps), Ycoor (Npoin + Ngaps), Zcoor (Npoin + Ngaps)

ReDim SPRIN (NDOFN, Npoin + Ngaps), GAPS (3, Npoin + Ngaps)

ReDim Incl (Nelem + Ngaps), Inc2(Nelem + Ngaps)

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 62

Nelem + Ngaps), OnlyTraz (Nelem + Ngaps)

NEVAB, Npoin + Ngaps)

NEVAB, Nelem + Ngaps), IJINC (Nelem + Ngaps, 2)
NEVAB, Nelem + Ngaps)

ReDim Mater
ReDim IDDOF
ReDim XYCOO
ReDim LMDOF

ReDim Comb Factor (NCOMB, Ncase), Tit Comb (NCOMB), GravityAmplif (NCOMB)
ReDim TrazFlag (Nmats), PROPS (Nmats + Ngaps + 1, 11)

ReDim GlobF (Ncase + NCOMB + NROOT, Nelem + Ngaps, 2 * NDOFN), TREAC (Ncase + NCOMB
+ NROOT, Npoin + Ngaps, NDOFN)

ReDim Displ (Ncase + NCOMB + NROOT, Npoin, NDOFN)

ReDim Strel (Ncase + NCOMB + NROOT, Nelem + Ngaps, NSTRE + 2), Stre2(Ncase + NCOMB
+ NROOT, Nelem + Ngaps, NSTRE + 2)

ReDim Titl$ (Ncase + NCOMB + NROOT), Dload(Ncase + NCOMB + NROOT, Nelem + Ngaps,
6)

ReDim Gravity Case (Ncase + NCOMB + NROOT), PointLoad(Ncase + NCOMB + NROOT, Npoin
+ Ngaps, NDOFN)

ReDim LoadType (Ncase + NCOMB + NROOT, Nelem + Ngaps), NpointLoads (Ncase + NCOMB +
NROOT) , NspanLoads (Ncase + NCOMB + NROOT)

ReDim Rx3D(Ncase + NCOMB), Ry3D(Ncase + NCOMB), Rz3D(Ncase + NCOMB), Rxx3D(Ncase
+ NCOMB), Ryy3D(Ncase + NCOMB), Rzz3D(Ncase + NCOMB)

ReDim Tmat (Nelem, 6, 6) 'Tmat is the transformation matrix from local to global
coordinates

End Sub

10.4 Other Subroutines

The first subroutine in this paragraph is the subspace program core, which manages the dynamic
analysis with the calls to the main subroutines. The other subroutines follow, in no particular order.
The subroutines presented within the text are part of the program and will not be re-presented
below.

Sub SubSpace ()

1

' this subroutine comes from Sub MDFEM and is modified

' in order to obtain the smallest eigenvalues and the corresponding eigenvectors,

' according to the SSPACE program published in K. J. Bathe: "Finite Element Procedures
In Engineering Analysis

! WRITTEN BY: P. VARAGNOLO == pvi20 ==

Dim FileDummy As String

Dim FileWorkl As String = myPath + "WORK1" 'open a file where will be saved the
element GLOBAL stiffness matrices

Dim FileWork3 As String = myPath + "WORK3" 'open a file where will be saved the
element LOCAL stiffness matrices

Dim Filel As System.IO.StreamWriter = Nothing

Dim File2 As System.IO.StreamWriter = Nothing 'a dummy file to be killed after it's
use

Errore = False

If Ngaps > 0 Then

Dim Text = "Non linear elements such as Gaps not allowed for Modal Analysis."
MsgBox (Text, vbExclamation, "Warning")
Exit Sub

End If

If NelOnlyTraz > 0 Then
Dim Text = "Non linear elements such as tie-beams not allowed for Modal Analysis."
MsgBox (Text, vbExclamation, "Warning")

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 63

Exit Sub

End If

If Dir (ModFile, 0) <> "" Then Kill (ModFile)

FileDummy = DataFile.Substring (0, Len (DataFile) - 4) + ".sel" : If Dir(FileDummy, O)
<> "" Then Kill (FileDummy)

If Dir(myPath + "workl", 0) <> "" Then Kill (myPath + "workl") 'kill workl if
it exists from previous calculations

If Dir (myPath + "work3", 0) <> "" Then Kill (myPath + "work3") 'kill work3 if

it exists from previous calculations

Filel = My.Computer.FileSystem.OpenTextFileWriter (ModFile, True)
File2 = My.Computer.FileSystem.OpenTextFileWriter (FileDummy, True)

Call Writel Eigen(Filel)

Call SetNodalData (File2) 'File2 is the Dummy streamwriter
If Errore Then

FileClose () : Exit Sub
End If

Call Write2 Eigen(Filel) 'WriteProperties

' *** NUMERATION OF DEGREES OF FREEDOM
Call DOFNUM ()

' *%% CALL ELEMENT SUBROUTINE (+ generate gaps elements)
Call INPELE (File2) 'File2 is the Dummy streamwriter

' *** CALCULATE ADDRESS OF DIAGONAL ELEMENTS
Call ADDRES ()

' **% DEAL WITH LOAD CASES AND LOAD COMBINATIONS (the combinations are treated as
Load Cases)

ReDim DloaL (Ncase + NCOMB + NROOT, Nelem + Ngaps, 2 * NDIME) 'carichi distribuiti in
coordinate locali

For Icase = 1 To Ncase + NCOMB
Call LOADS (Icase, 1, File2) 'File2 is the Dummy streamwriter
Next Icase

Call CreateStiffnessMatrix (FileWorkl, FileWork3) ' **% CALCULATE ELASTIC STIFFNESS
MATRIX
Call CreateMassMatrix () ' x%x CALCULATE MASS MATRIX
Call Sspace(Filel) ' *** calculate eigenvalues and eigenvectors
If Errore Then
FileClose()
Dim Text = "Error calculating eigenvalues."
MsgBox (Text, vbExclamation, "Warning")
End If

If Ifspe > 0 Then
Call STRBER (0, 1, Nelem, FileWork3)
Call OutSTRBE (0, 1, Nelem, Filel, File2)

Call SeismicForcesCalculationCQC ()
Call WriteSeismicForces (Filel)

End If
'restore original IDDOF (,) values - those read from input data
For Ipoin = 1 To Npoin
If Ntype = 2 Or Ntype = 3 Then
IDDOF (1, Ipoin) = Iffix(Ipoin)
IDDOF (2, Ipoin) = Iffiy(Ipoin)
IDDOF (3, Ipoin) = Iffiz(Ipoin)
IDDOF (4, Ipoin) = Ifrxx(Ipoin)
IDDOF (5, Ipoin) = Ifryy(Ipoin)
IDDOF (6, Ipoin) = Ifrzz(Ipoin)
End If

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 64

Next Ipoin

FileClose ()

Filel.Close ()

File2.Close () Kill (FileDummy)
static routines: now the static output file must be killed

If Dir (myPath + "WORK1", 0) <> "" Then Kill (myPath + "WORK1")

If Dir(myPath + "WORK3", 0) <> "" Then Kill (myPath + "WORK3")

End Sub

'this dynamic module made use of some of the

Sub CreateMassMatrix ()

Dim Icase As Integer
ReDim TotalMass (NDOFN), NodalMass (Npoin)

Call AssembMasses () ' *** CALL MASS SUBROUTINE
' *** ASSEMBLE LOADS MASSES
If Ncase > 1 Then
Icase = 2 'dead non structural loads
Call AddLoadMass (Icase)
End If

End Sub

Sub AssembMasses ()

'CREATE ELEMENT MASS MATRICES AND ASSEMBLE GLOBAL MASS MATRIX
Dim Ielem As Integer

If IfLumped Then
NMGLO = NDOFT
Else
NMGLO =
End If

NKGLO

ReDim GLOBM (NMGLO)
' *%% TLOOP OVER ELEMENT GROUPS
For Ielem = 1 To Nelem

If Ntype = 2 Or Ntype =
Next Ielem

3 Then Call BeamMass (Ielem)

End Sub

Sub BeamMass (Ielem As Integer)

'MASS GLOBAL MATRIX FOR BEAM ELEMENTS
Dim Imats, ii,

Dim BeamMass (2)
Dim Lengt, Leng2,

Idofn As Integer
As Single 'element mass at nodes i, J
Deltl (NDIME), Mmat (12, 12), Trasf(l2, 12), Sum,
Double

Dim Sa (12, 24),

ReDim MassC (78)

Asa (24, 24) As Double

Imats = Mater (Ielem)
If PROPS (Imats, 7) = 0 Then Exit Sub
Leng2 = 0#

For Idime = 1 To NDIME

Consl, Cons2 As

'same matrices as for Stiffness matrix

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

65

Deltl (Idime) = XYCOO (Idime + 3, Ielem) - XYCOO (Idime, Ielem)
Leng2 = Leng2 + Deltl (Idime) * Deltl (Idime)

Next Idime

Lengt = Math.Sqgrt (Leng2)

BeamMass (1) = PROPS (Imats, 7) * PROPS(Imats, 2) * Lengt / 2
BeamMass (2) = BeamMass (1)

Consl = PROPS (Imats, 7) * PROPS(Imats, 2) * Lengt / 420
Cons2 = PROPS (Imats, 8) / PROPS (Imats, 2) * 70

If IfLumped Then

Mmat (1, 1) = Consl * 210
Mmat (2, 2) = Mmat(l, 1)
Mmat (3, 3) = Mmat(l, 1)
Mmat (7, 7) = Mmat(l, 1)
Mmat (8, 8) = Mmat(l, 1)
Mmat (9, 9) = Mmat (1, 1)

'lumped matrix is already global and is stored in a vector according to Bathe
technique in STAP program (only diagonal elements)
For Ievab = 1 To NEVAB

MassC (Ievab) = Mmat (Ievab, Ievab)

Next Ievab
Else

'consistent 3-D mass matrix
'Mjj
Mmat (1, 1) = Consl * 140
Mmat (2, 2) = Consl * 156
Mmat (2, 6) = Consl * 22 * Lengt
Mmat (3, 3) = Consl * 156
Mmat (3, 5) = -Consl * 22 * Lengt
Mmat (4, 4) = 0 'Cons2 * 2 '0
Mmat (5, 3) = Mmat (3, 5)
Mmat (5, 5) = Consl * 4 * Leng2
Mmat (6, 2) = Mmat (2, 6)
Mmat (6, 6) = Mmat (5, 5)
'Mkk
For Idofn = 1 To NDOFN

Mmat (Idofn + NDOFN, Idofn + NDOFN) = Mmat (Idofn, Idofn)
Next Idofn
Mmat (2 + NDOFN, 6 + NDOFN) = -Mmat (2, 6)
Mmat (3 + NDOFN, 5 + NDOFN) = -Mmat (3, 5)
Mmat (5 + NDOFN, 3 + NDOFN) = -Mmat (5, 3)
Mmat (6 + NDOFN, 2 + NDOFN) = -Mmat (6, 2)
'Mkj
Mmat (1 + NDOFN, 1) = Consl * 70
Mmat (2 + NDOFN, 2) = Consl * 54
Mmat (2 + NDOFN, 6) = Consl * 13 * Lengt
Mmat (3 + NDOFN, 3) = Consl * 54
Mmat (3 + NDOFN, 5) = -Consl * 13 * Lengt
Mmat (4 + NDOFN, 4) = 0 'Cons2 'O
Mmat (5 + NDOFN, 3) = -Mmat (3 + NDOFN, 5)
Mmat (5 + NDOFN, 5) = -Consl * 3 * Leng2
Mmat (6 + NDOFN, 2) = -Mmat (2 + NDOFN, 6)
Mmat (6 + NDOFN, 6) = -Consl * 3 * Leng2
'Mik

For Irow = 1 + NDOFN To NDOFN + NDOFN
For Icol = 1 To NDOFN
Mmat (Icol, Irow) = Mmat (Irow, Icol)
Next Icol
Next Irow

'if lumped matrix is requested, don't make [T]T * [M] * [T] because global
and local matrices are the same

Call FillTrasf (Ielem, Trasf) 'fill Trasf (12, 12) matrix with 4 Transformation
Tmat (6, 6)

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 66

'first product: Sa(l2, 12) = [T]transp * [Mmat]
'change rows and columns of Tmat to obtain the transpose matrix
For Ievab = 1 To NEVAB
For Jevab = 1 To NEVAB
Sum = 0
For Kevab = 1 To NEVAB
Sum += Trasf (Kevab, Ievab) * Mmat (Kevab, Jevab)
Next Kevab
Sa (Ievab, Jevab) = Sum
Next Jevab
Next Ievab

'second product: Asa(l2, 12) = [Sa] * [T]
For Ievab = 1 To NEVAB
For Jevab = 1 To NEVAB
Sum = 0
For Kevab = 1 To NEVAB
Sum += Sa (Ievab, Kevab) * Trasf (Kevab, Jevab)
Next Kevab
Asa (Ievab, Jevab) = Sum
Next Jevab
Next Ievab

'store global mass matrix in a vector according to Bathe technique in STAP

program
ii =0
For Irow = 1 To 12
For Icol = Irow To 12
ii += 1
MassC(ii) = Asa(Irow, Icol)
Next Icol
Next Irow
End If
Call ADDBAN Mass (Ielem, BeamMass)
End Sub

Sub ADDBAN Mass (Ielem As Integer, BeamMass () As Single)
Dim N1, Idofn, Jdofn, Ievab, MAADD, Kevab, IJdif, Indel, Inde2 As Integer
N1 =0

'calculate masses on not retrained dof
For Ievab = 1 To NEVAB
Idofn = LMDOF (Ievab, Ielem)
If Idofn <> 0 Then
If Ievab <= NDOFN Then
TotalMass (Ievab) += BeamMass (1)
If Ievab = 1 Then NodalMass (Incl (Ielem)) += BeamMass (1)
Else
TotalMass (Ievab - NDOFN) += BeamMass (2)
If Ievab = NDOFN + 1 Then NodalMass (Inc2 (Ielem)) += BeamMass (2)
End If
End If
Next Ievab

If IfLumped Then
'lumped mass matrix
For Ievab = 1 To NEVAB
Idofn = LMDOF (Ievab, Ielem)
If Idofn <> 0 Then
GLOBM (Idofn) += MassC (Ievab)
End If
Next Ievab
Else
'consistent mass matrix

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 67

For Ievab = 1 To NEVAB
Idofn LMDOF (Ievab, Ielem)

If Idofn > 0 Then
MAADD = MAXAD (Idofn)
Kevab = Ievab

For Jevab = 1 To NEVAB
Jdofn LMDOF (Jevab, Ielem)
IJdif = Idofn - Jdofn

If Jdofn > 0 And IJdif >= 0 Then
Indel = MAADD + IJdif
Inde2 = Kevab
If Jevab >= Ievab Then Inde2 = Jevab + N1
GLOBM (Indel) += MassC (Inde2)
End If
Kevab = Kevab + NEVAB - Jevab
Next Jevab
End If
N1 = N1 + NEVAB - Ievab
Next Ievab
End If

End Sub

Sub Writel Eigen(Filel As StreamWriter)

Dim Dumm$ = "", Spc$ = ""

PrtString = Spc$ + " " + vbCrLf

PrtString += Spc$ + " M DF E M = DYNAMIC RESPONSE MODULE "o+
vbCrLf

PrtString += Spc$ + " "o+
vbCrLf

PrtString += vbCrLf : PrtString += vbCrLf

PrtString += Spc$ + "*** G E NE R A L DATA ***" + vbCrLf

PrtString += vbCrLf

PrtString += Spc$S + "N. OF POINTS &ttt iittittteneeeneenneennennns =" 4
String.Format ("{0,5}", Npoin.ToString ("####0")) + vbCrLf

PrtString += Spc$ + "N. OF ELEMENTS ... tittitetenenennnneaeannns =" 4+
String.Format ("{0,5}", Nelem.ToString ("####0")) + vbCrLf

PrtString += Spc$ + "N. OF EIGENVALUES REQUESTED .. i i it e eeennnn =" aF
String.Format ("{0,5}", NROOT.ToString ("####0")) + vbCrLf

Dumm$ = "Consistent"

If IfLumped Then Dumm$ = "Lumped"

PrtString += Spc$ + "TYPE OF MASS MATRICES ... iiieiennennnnn. : " + Dumm$ +
vbCrLf

PrtString += Spc$ + "N. OF SUBSPACE ITERATIONS ..t ittt et teeeennn =" aF
String.Format ("{0,5}", NITEM.ToString ("####0")) + vbCrLf

PrtString += Spc$ + "TOLERANCE FOR EIGENVALUES CONVERGENCE CHECK =" aF
String.Format ("{0,11}", RTOL.ToString("0.0000E+00")) + vbCrLf

Dumm$ = "No"

If IFSS = 1 Then Dumm$ = "Yes"

PrtString += Spc$ + "STURM SEQUENCE CHECKiitininninennnn.. g Y &
String.Format ("{0,4}", Dumm$) + vbCrLf

Dumm$ = "No"

If IFPR = 1 Then Dumm$ = "Yes"

PrtString += Spc$ + "PRINT INTERMEDIATE ITERATION RESULTS : " +
String.Format ("{0,4}", Dumm$) + vbCrLf

PrtString += vbCrLf

PrtString += Spc$ + "for the static analysis refer to the xxxx.dat file" + vbCrLf

PrtString += vbCrLf
If Not IfLumped Then
PrtString += Spc$ + "IMPORTANT REMARK!" + vbCrLf

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 68

PrtString += Spc$ + "If consistent mass matrix 1is requested (see above),
torsional modes are neglected." + vbCrLf

PrtString += Spc$ + "To modify this assumption, some changes in Sub BeamMass
are needed." + vbCrLf
End If

PrtString += vbCrLf
Filel.WriteLine (PrtString)

End Sub

Sub Write2 Eigen(Filel As StreamWriter)
Dim Spc$ = ""

PrtString = Spc$ + "* * * M A TERTIAL PROPERTTIES * * *" + yvbCrLf
PrtString += vbCrLf

PrtString += Spc$ + " Set mass density" + vbCrLf
' *%% LOOP OVER MATERIAL SETS

For Isets = 1 To Nmats
PrtString += Spc$ + String.Format ("{0,5}", Isets.ToString ("####0")) + " w

PrtString += String.Format ("{0,12}", PROPS(Isets, 7).ToString("0.0000E+00"))
+ vbCrLf
Next Isets
Filel.WriteLine (PrtString)

End Sub

Sub AddLoadMass (Icase As Integer)
Dim Ldofn, Lkglo As Long
Dim pl, p2, Mass, Mass_i, Mass j As Double
Dim Deltl (3), Leng2, Lengt As Double

If Gaccel = 0 Then Exit Sub

'add point loads mass: PointLoad array contains loads referred to the global
system
For Ipoin = 1 To Npoin
If Ntype = 2 Or Ntype = 3 Then
Mass = Math.Abs (PointLoad (Icase, Ipoin, 1) / Gaccel) 'Fx
Mass += Math.Abs (PointLoad (Icase, Ipoin, 2) / Gaccel) 'Fy
Mass += Math.Abs (PointLoad (Icase, Ipoin, 3) / Gaccel) 'Fz

If Mass > 0 Then
NodalMass (Ipoin) += Mass
For Idofn = 1 To NDOFN
Ldofn = IDDOF (Idofn, Ipoin)
If Ldofn <> 0 Then
TotalMass (Idofn) += Mass 'nodal masses can act in x, vy, z
directions and are effective masses for all dof
End If
Next Idofn

If IfLumped Then
Lkglo = IDDOF (1, Ipoin)
GLOBM (Lkglo) += Mass
Lkglo = IDDOF (2, Ipoin)
GLOBM (Lkglo) += Mass
Lkglo = IDDOF (3, Ipoin)
GLOBM (Lkglo) += Mass
Else
Lkglo = MAXAD (IDDOF (1, Ipoin))
GLOBM (Lkglo) += Mass

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 69

Lkglo = MAXAD (IDDOF (2, Ipoin))
GLOBM (Lkglo) += Mass
Lkglo = MAXAD (IDDOF (3, Ipoin))
GLOBM (Lkglo) += Mass
End If
End If
End If
Next Ipoin

'add linear loads mass: Eload array contains loads already tranformed from the
local system to the global system
For Ielem = 1 To Nelem

Leng2 = 0
For Idime = 1 To NDIME
Deltl (Idime) = XYCOO (Idime + 3, Ielem) - XYCOO (Idime, Ielem)

Leng2 += Deltl (Idime) * Deltl (Idime)
Next Idime
Lengt = Math.Sqgrt (Leng2)

If Ntype = 2 Or Ntype = 3 Then

pl = (Dload(Icase, Ielem, 1) + Dload(Icase, Ielem, 2) + Dload(Icase,
Ielem, 3)) / Gaccel 'gx-i + gqy-i + gz-1i
p2 = (Dload(Icase, Ielem, 4) + Dload(Icase, Ielem, 5) + Dload(Icase,

Ielem, 6)) / Gaccel 'gx-j + qy-J + gz-j
Mass i = Math.Abs(Lengt * (pl / 2 + (p2 - pl) / 6))

If Mass i > 0 Then
NodalMass (Incl (Ielem)) += Mass_i

For Idofn = 1 To NDOFN
Ldofn = IDDOF (Idofn, Incl (Ielem))
If Ldofn <> 0 Then
TotalMass (Idofn) += Mass i 'linear loads masses can act in x,
vy, z directions and are effective masses for all dof
End If
Next Idofn

If IfLumped Then
Lkglo = IDDOF (1, Incl (Ielem))
GLOBM (Lkglo) += Mass i
Lkglo = IDDOF (2, Incl(Ielem))
GLOBM (Lkglo) += Mass i
Lkglo = IDDOF (3, Incl(Ielem))
GLOBM (Lkglo) += Mass i

Else
Lkglo = MAXAD (IDDOF (1, Incl(Ielem)))
GLOBM (Lkglo) += Mass i
Lkglo = MAXAD (IDDOF (2, Incl (Ielem)))
GLOBM (Lkglo) += Mass i
Lkglo = MAXAD (IDDOF (3, Incl (Ielem)))
GLOBM (Lkglo) += Mass i

End If

End If

Mass_j = Math.Abs(Lengt * (pl / 2 + (p2 - pl) / 3))

If Mass j > 0 Then
NodalMass (Inc2 (Ielem)) += Mass J

For Idofn = 1 To NDOFN
Ldofn = IDDOF (Idofn, Inc2(Ielem))
If Ldofn <> 0 Then
TotalMass (Idofn) += Mass j 'linear loads masses can act in x,
y, z directions and are effective masses for all dof
End If
Next Idofn

If IfLumped Then
Lkglo = IDDOF (1, Inc2(Ielem))
GLOBM (Lkglo) += Mass J

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 70

Else

End If
End If
End If
Next Ielem

End Sub

Lkglo =
GLOBM (Lkglo)
Lkglo =
GLOBM (Lkglo)

Lkglo =
GLOBM (Lkglo)
Lkglo =
GLOBM (Lkglo)
Lkglo =
GLOBM (Lkglo)

IDDOF (2, Inc2(Ielem))
+= Mass j
IDDOF (3, Inc2(Ielem))
+= Mass j

MAXAD (IDDOF (1,
+= Mass_j
MAXAD (IDDOF (2,
+= Mass_j
MAXAD (IDDOF (3,
+= Mass_j

Inc2 (Ielem)))

Inc2 (Ielem)))

Inc2 (Ielem)))

The subroutine Sspace is represented because there are some differences from the one listed in
Appendix A, where the Response Spectrum Analysis is not performed.

Sub
' in the generalized

' written by K.

' Input variables

' GLOBK (NKGLO)

' GLOBM (NMGLO) =

' MAXAD (NDOFT + 1)
GLOBK ()

' R(NDOFT, NC) =
' EIGV (NC) =
' TT (NDOFT) =
' W (NDOFT) =
' AR (NNC) =
' BR(NNC)
' VEC (NC, NC) =
' D(NC) =
' RTOLV (NC) =
' BUP (NC) =
' BLO (NC) =
' BUPC (NC) =

' NKGLO =
' NMGLO =
' NDOFT =

' NC =

NROOT + 8),

' NNC =
' NROOT =

' RTOL =

J. Bathe:

' revised and translated in vb.net by Paolo Varagnolo,

= working

total number of degrees of freedom =

number of iteration vectors used,

Sspace (Filel As StreamWriter)

' Program to solve for the smallest eigenvalues and corresponding eigenvectors

eigenproblem using the subspace iteration method

"Finite Element Procedures in Engineering Analysis"
Prentice-Hall, 1982

2020

stiffness matrix in compacted form

(global scope variable, already assembled)

mass matrix in compacted form

(global scope variable, already assembled)

= vector containing the addresses of diagonal elements of

(global scope variable, already assembled)
eigenvectors on solution exit

eigenvalues on solution exit

working vector
working vector
working vector
vector
matrix
vector
vector
vector
vector
vector

storing projection of GLOBK
storing projection of GLOBM
working
working
working
working
working
working

number of elements below skyline of GLOBK()

(global scope variable, already assigned)

number of elements below skyline of GLOBM()

(global scope variable, already assigned)

order of GLOBK(),
already assigned)

usually set to MIN (2*NROOT,

GLOBM ()
(global scope variable,

cannot be larger then the number of mass degrees of freedom
NC * (NC + 1) / 2 dimension of storage vectors AR, BR
number of required eigenvalues and eigenvectors

(global scope variable,

convergence tolerance on eigenvalues

(global scope variable,

already assigned)

already assigned)

(LE-6 or smaller)

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

71

to 106)

check

check

' N

' N
"I

"I

ITEM = maximum number of subspace iterations permitted (usually set

the parameters NC and/or NITEM must be increased
if a Then solutions has Not converged
(global scope variable, already assigned)

SMAX = maximum number of sweeps in Jacobi iteration

FSS = flag for Sturm sequence check: = 0 --> no check; =1 -->
(global scope variable, already assigned)

FPR = flag for intermediate printing: = 0 --> no check; = 1 -->
(global scope variable, already assigned)

stif = scratch streamwriter to store stiffness matrix

ilel = streamwriter for output file

utput variables

' E
'R

Dim

IGV (NROOT) = eigenvalues
(NDOFT, NROOT) = eigenvectors
NC, MassDOF, NNC, ij, Iconv, NSCH, NSMAX, N1, NC1, ND, ISH, Nite, Nei, Icoun,

Idofn As Integer

BR (NNC)

vbCrLf

Dim
Dim
Dim
Dim
Dim

Mas
NC
NC
NNC

Dim
As

Dim

TOL

itemp As Integer

i%, 3%, 1%, 1i%

TOLJ, RT, MaxTol, ART, BRT, Dummy, Vnorm, Wnorm, Shift As Double
Text As String

ConvReached, Swapped As Boolean

sDOF = CalculateMassDOF ()

= Math.Min (2 * NROOT, NROOT + 8)
= Math.Min (NC, MassDOF)

= NC * (NC + 1) / 2

R (NDOFT, NC), TT(NDOFT), W (NDOFT), EIGV(NC), D(NC), VEC(NC, NC), AR(NNC),
Double
RTOLV (NC), BUP(NC), BLO(NC), BUPC(NC) As Double

J = 0.000000000001 'TOLERANCE FOR jACOBI ITERATION

If NROOT > NDOFT Then

End

Text = "The number of requested eigenvalues is greater then " + vbCrLf

Text += "the number of degrees of freedom in the model." + vbCrLf

Text += "Only " + NDOFT.ToString + " eigenvalues will be serched." + vbCrLf
MsgBox (Text, vbExclamation, "Warning")

Filel.WriteLine (Text)

NROOT = NDOFT

If

If NROOT > MassDOF Then

End

If

Text = "The number of requested eigenvalues is greater then " + vbCrLf

Text += "the number of mass degrees of freedom." + vbCrLf

Text += "Only " + MassDOF.ToString + " eigenvalues will be serched." + vbCrLf
MsgBox (Text, vbExclamation, "Warning")

Filel.WritelLine (Text)

NROOT = MassDOF

If

IFPR <> 0 Then
Text = vbCrLf
Text += "global stiffness matrix in compacted form " + vbCrLf
For i% = 1 To NKGLO
Text += String.Format("{0,15}", GLOBK(i%).ToString("0.00000000E+00")) +

Next 1%
Filel.WritelLine (Text)

Text = vbCrLf
Text += "global mass matrix in compacted form " + vbCrLf

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 72

For i% = 1 To NMGLO

Text += String.Format ("{0,15}", GLOBM(i%).ToString("0.00000000E+00"))

vbCrLf
Next i%
Filel.WriteLine (Text)
End If

'Initialization
Iconv = 0

NSCH = 0

NSMAX = 12

N1 = NC + 1

NCl = NC - 1

Dim Dstif As System.IO.StreamWriter = Nothing

+

Dim FileWork(O As String = myPath + "WORKO" 'open a file where will be saved the

stiffness global matrix

Dstif = My.Computer.FileSystem.OpenTextFileWriter (FileWorkO,

'write global stiffness matrix

For i% = 1 To NKGLO
Dstif.WriteLine (GLOBK (1%))

Next i%

Dstif.Close ()

ReDim D(NC), R(NDOFT, NC) 'this set the arrays to zero

'establish starting iteration vectors
ND = Int (NDOFT / NC)
If NMGLO <= NDOFT Then
3% = 0
For 1% = 1 To NDOFT
1i% = MAXAD(1%)

R(i%, 1) = GLOBM(i%)

If GLOBM(i%) > 0 Then j% += 1

W(i%) = GLOBM(1i%) / GLOBK (1i1%)
Next i%

If NC > j% Then
Text =

degrees of freedom." + vbCrLf
MsgBox (Text, vbExclamation, "Warning")
Filel.WriteLine (Text)

End
End If
Else
For i% = 1 To NDOFT
1i% = MAXAD(i%)
R(i%, 1) = GLOBM(ii$%)
W(i%) = GLOBM(ii) / GLOBK (ii)
Next i%
End If

1% = NDOFT - ND
For j% = 2 To NC
RT =0
For i% = 1 To 1%
If W(i%) >= RT Then
RT = W(1i%)
ij = 1%
End If
Next 1%
For i% = 1% To NDOFT
If W(i%) > RT Then

RT = W(i%)
ij = 1i%
End If

Next 1%

TT(§%) = ij

W(ij) = 0.0

1% -= ND

R(ij, j%) = 1.0

"The number of iteration vectors must not exceed the number of mass

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

73

Next j%

PrtString
vbCrLf

Call PrintArray 1 10 Int(PrtString,

Filel.WriteLine (PrtString)

TT, 2, NC)

'factorize matrix GLOBK () into (L)*(D)*(L(T))
ISH = 0
Call Decomp (ISH, Filel)
If Errore Then
Filel.Close () Exit Sub

End If

'start of iteration loop
Nite 0
ConvReached False
Do While Iconv 0 'it is an infinite loop,
loop occurs when ConvReached becomes true
Nite += 1
If IFPR <> 0 Then
Text vbCrLf
Text += "Iteration
Nite.ToString ("###0")) + vbCrLf
Filel.WriteLine (Text)
End If

Iconv remains

number: +

'calculate the projection of GLOBK and GLOBM
ij 0
For j% 1 To NC
For k% 1 To NDOFT
TT (k%) = R(k%,
Next k%
Call REDBAK(TT,
For i% j% To
ART 0
For k% =1
ART +=
Next k%
ij +=1
AR(1])
Next i%
For k%
R(k

k3 9%)

Filel)
NC

To NDOFT

R(k%, 1%) * TT (k%)

ART

1

I4

To NDOFT

3%) = TT (k%)

o —
°

If IFPR <> 0 Then
PrtString vbCrLf
PrtString += "array TT() after REDBAK" + vbCrLf
Call PrintArray 1 10 Real (PrtString, TT, 1, NDOEFT)
Filel.WriteLine (PrtString)

End If
i3 =0
For j% = 1 To NC
Call MULT (TT, GLOBM, R, 3j%, NMGLO)
For i% = j% To NC
BRT = 0
For k% = 1 To NDOFT
BRT += R(k%, 1i%) * TT (k%)
Next k%
ij +=1
BR(ij) = BRT
Next 1%
If Not ConvReached Then
For k% = 1 To NDOFT
R(k%, J%) = TT (k%)
Next k%
End If
Next J%

"Degrees of freedom excited by unit starting iteration vectors"

+

0. The exit from the

String.Format ("{0,4}",

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

74

'solve for eigensystem of subspace operators
If IFPR <> 0 Then

Call PrintProjections (AR, BR, NC, Filel)
End If

Call Jacobi (AR, BR, VEC, EIGV, W, NC, NNC, TOLJ, NSMAX, IFPR, Filel)
If Errore Then

FileClose () : Exit Sub
End If

If IFPR <> 0 Then
Text = "AR and BR after Jacobi diagonalization"
Filel.WriteLine (Text)
Call PrintProjections (AR, BR, NC, Filel)

End If

'arrange eigenvalues in ascending order
Swapped = True
Do Until Swapped = False

Swapped = False

ii =1
For i% = 1 To NC1
itemp = ii + N1 - i%

If EIGV(i% + 1) < EIGV(i%) Then
Swapped = True
Dummy = EIGV(i% + 1)
EIGV(i% + 1) = EIGV(i%)
EIGV(i%) = Dummy
Dummy = BR(itemp)
BR(itemp) = BR(ii)
BR(ii) = Dummy
For k% = 1 To NC
Dummy = VEC (k%, 1% + 1
= (

VEC (k%, i% + 1) VEC
VEC (k%, 1%) = Dummy
Next k%
End If
ii = itemp
Next i%
Loop

If IFPR <> 0 Then
Text = "Eigenvalues of AR - Lambda * BR" + vbCrLf
Call PrintArray 1 10 Real (Text, EIGV, 1, NC)
Filel.WriteLine (Text)

End If

'calculate GLOBM times approximate or final eigenvectors
For i% = 1 To NDOFT
For j% = 1 To NC

TT(3%) = R(i%, 3%)
Next %
For k% = 1 To NC

RT = 0

For 1% = 1 To NC
RT += TT(1%) * VEC (1%, k%)

Next 1%
R(i%, k%) = RT
Next k%

'this is the real exit from the iteration loop
If ConvReached Then Exit Do

'check for convergence of eigenvalues
For i% = 1 To NC

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 75

RTOLV (1%) = Math.Abs (EIGV(i%) - D(i%)) / EIGV(i%)
Next 1%
If IFPR <> 0 Then
Text = vbCrLf
Text += "Relative tolerance reached on eigenvalues." + vbCrLf
Call PrintArray 1 10 Real (Text, RTOLV, 1, NC)
Filel.WriteLine (Text)
End If

MaxTol = -9999
For i% = 1 To NROOT
If MaxTol < RTOLV (i%) Then MaxTol = RTOLV (i%)
Next i%
If MaxTol < RTOL Then
'convergence reached
Text = vbCrLf

Text += "Convergence reached for tolerance = " + String.Format("{0,12}",
RTOL.ToString ("0.00000E+00")) '+ vbCrLf
Filel.WriteLine (Text)
ConvReached = True 'Iconv = 1
Else

If Nite >= NITEM Then

'convergence not reached

Text = vbCrLf

Text += "No convergence in maximum number of iteratioons permitted."
+ vbCrLf

Text += "Current iteration values will be accepted." + vbCrLf

Text += "The Sturm sequence check is not performed." + vbCrLf

Filel.WriteLine (Text)

ConvReached = True 'Iconv = 2

IFSS = 0
Else
For i% = 1 To NC
D(i%) = EIGV(i%)
Next i%
End If

Text = vbCrLf

Text += "The calculated eigenvalues are:" + vbCrLf
Call PrintArray 1 10 Real (Text, EIGV, 1, NROOT)
Filel.WritelLine (Text)

Text = ""
Text += "The calculated eigenvectors are:" + vbCrLf
For Iroot = 1 To NROOT

Dim Dumm (NDOFT) As Double

For Idofn = 1 To NDOFT

Dumm (Idofn) = R(Idofn, Iroot)

Next Idofn

Call PrintArray 1 10 Real (Text, Dumm, 1, NDOFT)
Next Iroot
Filel.WriteLine (Text)

'calculate and print error norms

'read global stiffness matrix
Using sr As StreamReader = File.OpenText (FileWork0) 'stiffness global matrix
For i% = 1 To NKGLO
GLOBK (1%) = sr.ReadLine
Next i%
End Using

For 1% = 1 To NROOT
RT = EIGV(1%)
Call MULT(TT, GLOBK, R, 1%, NKGLO)
Vnorm = 0
For i% = 1 To NDOFT
Vnorm += TT(i%) * TT(i%)
Next 1%

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 76

Call MULT (W, GLOBM, R, 1%, NMGLO)
Wnorm = 0
For i% = 1 To NDOFT

TT(i%) —-= RT * W(i%)
Wnorm += TT(i%) * TT(i%)
Next i%

Vnorm = Math.Sqgrt (Vnorm)

Wnorm = Math.Sqgrt (Wnorm)

D(1%) = Wnorm / Vnorm
Next 1%

If IFPR > 0 Then
Text = vbCrLf
Text += "Print error norms on the eigenvalues" + vbCrLf
Call PrintArray 1 10 Real (Text, D, 1, NROOT)
Filel.WriteLine (Text)

End If

'apply Sturm sequence check
If IFSS <> 0 Then 'IFSS is the flag for Sturm sequence check
Call SturmCheck (EIGV, RTOLV, BUP, BLO, BUPC, D, NC, Nei, RTOL,
If Errore Then
Filel.Close () : Exit Sub
End If
If IFPR > 0 Then
Text = vbCrLf

Text += "Check applied at shift: " + String.Format ("{0,12}",
Shift.ToString ("0.00000E+00")) '+ vbCrLf
Filel.WriteLine (Text)
End If

'shift matrix GLOBK
'read global stiffness matrix

Using sr As StreamReader = File.OpenText (FileWork(O) 'stiffness global matrix

file
For i% = 1 To NKGLO
GLOBK (1i%) = sr.ReadLine
Next i%
End Using

If NMGLO <= NDOFT Then
For i% = 1 To NDOFT
ii = MAXAD (i%)
GLOBK (ii) -= GLOBM(i%) * Shift
Next i%
Else
For i% = 1 To NKGLO
GLOBK (i%) —-= GLOBM(i%) * Shift
Next i%
End If

'factorize shifted matrix
ISH = 1
Call Decomp (ISH, Filel)
If Errore Then

Filel.Close() : Exit Sub
End If

'count number of negative diagonal elements
NSCH = 0
For 1% = 1 To NDOFT
ii = MAXAD(1%)
If GLOBK(ii) < 0 Then NSCH += 1
Next 1%

If NSCH = Nei Then
Text = ""

Text += "We found the lowest: " + String.Format ("{0,4}",

NSCH.ToString ("###0")) + " eigenvalues "
Text += " (" + NROOT.ToString + " had to be found)" + vbCrLf
Filel.WriteLine (Text)

shift,

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

77

Else
Text = ""
Text += "There are: " + String.Format ("{0,4}", (NSCH -
Nei) .ToString ("###0")) + " eigenvalues missing" + vbCrLf
Filel.WriteLine (Text)
End If
End If 'Sturm sequence check

'Write FREQUENCIES (ADDED BY PV)
If IFSS = 0 Then
Text = vbCrLf + " PRINT OF FREQUENCIES" + vbCrLf

Else
Text = " PRINT OF FREQUENCIES" + vbCrLf
End If
Text += vbCrLf
Text += " MODE CIRCULAR " + vbCrLf
Text += " NUMBER FREQUENCY FREQUENCY PERIOD" + vbCrLf
Text += " (RAD/SEC) (CYCLES/SEC) (SEC)" + vbCrLf
TERE = Vomommmmomomemo e o e e e e e e e o o o o e o = e e o S D o e e D D D = "

Filel.WriteLine (Text)

ReDim CircFreq (NROOT), Frequency (NROOT), Period (NROOT)
Dim TPI As Double = 8 * Math.Atan (1)
For i% = 1 To NROOT

CircFreq(i%) = Math.Sqrt(EIGV(i%)) 'circular frequency
Frequency (i%) = CircFreq(i%) / TPI 'frequency

Period(i%) = TPI / CircFreq(i%) 'period

Text = String.Format ("{0,5}", i%.ToString ("####0")) + " W

Text += String.Format ("{0,17}", CircFreqg(i%) .ToString("E8"))
Text += String.Format ("{0,17}", Frequency(i%) .ToString("E8"))
Text += String.Format ("{0,17}", Period(i%) .ToString("E8"))
Filel.WritelLine (Text)

Next i%

CurCase = Ncase + NCOMB
Text = vbCrLf
Text += "Nodes displacements / rotations" + vbCrLf

Text += M————m—m oo " + vbCrLf
Text += " Node eigen" + vbCrLf
Text += " number vector X-displac. Y-displac. Z-displac. XX-rotation YY-

rotation ZZ-rotation" '+ vbCrLf
Filel.WriteLine (Text)

For Iroot = 1 To NROOT
CurCase += 1
Icoun = 0
For Ipoin = 1 To Npoin
For Idofn = 1 To NDOFN
If IDDOF (Idofn, Ipoin) > 0 Then
Icoun += 1
Displ (CurCase, Ipoin, Idofn) = R(Icoun, Iroot)
End If
Next Idofn
Next Ipoin
Next Iroot

'print of eigenvalues
For Ipoin = 1 To Npoin
CurCase = Ncase + NCOMB
Text = String.Format ("{0,6}", Ipoin.ToString ("#####0"))
For Iroot = 1 To NROOT
CurCase += 1
If Iroot > 1 Then Text = " "

Text += String.Format("{0,8}", Iroot.ToString ("#####0")) + ™ "
For Idofn = 1 To NDOFN
Text += String.Format ("{0,13}", Displ (CurCase, Ipoin,

Idofn) .ToString ("0.00000E+00"))
Next Idofn
Filel.WriteLine (Text)
Next Iroot
Next Ipoin

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 78

Call ParticipantMassesCalculation(R) 'calculate participant masses for seismic
analysis
Call WriteParticipantMasses (Filel)

If Ifspe > 0 Then
Call SpectralResponse (R) 'calculate Modal Response Spectrum analysis
Call WriteSpectrumDisp (Filel)

End If

If Dir(myPath + "WORKO") <> "" Then Kill (myPath & "WORKO")

End Sub

Sub WriteParticipantMasses (Filel As StreamWriter)

Dim Text As String
Dim ParticTotMass (NDOFN) As Single

'PartFact (Iroot, Icoun)

Text = vbCrLf
Text += "Modal participation factors" + vbCrLf

Wprle, 7= Vooomooomooooooooooooooooooooooomooomooomooos " + vbCrLf
Text += " Mode X direction Y direction Z direction" + vbCrLf
WERE 12 Voo omm e m o s e E e S o e e S S o DI SIS S "

Filel.WriteLine (Text)

For Imode = 1 To NROOT
Text = String.Format("{0,5}", Imode.ToString ("####0"))
For Idime = 1 To NDIME
Text += String.Format ("{0,12}", PartFact (Imode,
Idime) .ToString ("0.000000"))
Next Idime
Filel.WritelLine (Text)
Next Imode
Filel.WriteLine ()

Text = ""

Text += "Modal participating mass ratio (p.m.r.)" + vbCrLf
WesRe, = Vooos " + vbCrLf
Text += " Mode p.m.r. X p.m.r. Y p.m.r. Z" + vbCrLf
Text 4= "--—————""""""""""""""""""""""""""—"—"—"—~\—~————— "

Filel.WriteLine (Text)

For Imode = 1 To NROOT
Text = String.Format("{0,5}", Imode.ToString ("####0"))
For Idofn = 1 To NDIME
ParticTotMass (Idofn) += PartMas (Imode, Idofn)
Text += String.Format ("{0,12}", PartMas (Imode,
Idofn) .ToString ("0.000000"))
Next Idofn
Filel.WritelLine (Text)
Next Imode

Taxt = Vomomcoooomomomsoosomosossommomosoncoomo=m= " + vbCrLf
Text += " Sum"
For Idofn = 1 To NDIME
Text += String.Format ("{0,12}", ParticTotMass (Idofn).ToString("0.000000"))
Next Idofn
Filel.WriteLine (Text)
Filel.WriteLine ()

Text = ""
If ParticTotMass(1l) < 0.85 Then
Text += "Warning! participating masses 1in X direction < 85%. §7.3.3.1
prescriptions not observed." + vbCrLf
Else

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 79

Text += "Participating masses in X direction >= 85%, as prescribed in NTC 2018
§7.3.3.1." + vbCrLf
End If
Filel.WriteLine (Text)

Text = ""
If ParticTotMass (2) < 0.85 Then
Text += "Warning! participating masses in Y direction < 85%. §7.3.3.1
prescriptions not observed." + vbCrLf
Else

Text += "Participating masses in Y direction >= 85%, as prescribed in NTC 2018
§7.3.3.1." + vbCrLf
End If
Filel.WriteLine (Text)

End Sub

Sub WriteParticipantMasses (Filel As StreamWriter)

Dim Text As String
Dim ParticTotMass (NDOFN) As Single

'PartFact (Iroot, Icoun)

Text = vbCrLf
Text += "Modal participation factors" + vbCrLf

TeXt 4= Mmoo " + vbCrLf
Text += " Mode X direction Y direction Z direction" + vbCrLf
Text 4= Moo "

Filel.WritelLine (Text)

For Imode = 1 To NROOT
Text = String.Format("{0,5}", Imode.ToString ("####0"))
For Idime = 1 To NDIME
Text += String.Format ("{0,12}", PartFact (Imode,
Idime) .ToString ("0.000000"))
Next Idime
Filel.WriteLine (Text)
Next Imode
Filel.WriteLine ()

Text = ""

Text += "Modal participating mass ratio (p.m.r.)" + vbCrLf
Text 4= Moo " + vbCrLf
Text += " Mode p.m.r. X p.m.r. Y p.m.r. Z" + vbCrLf
Text 4= Moo @

Filel.WritelLine (Text)

For Imode = 1 To NROOT
Text = String.Format ("{0,5}", Imode.ToString ("####0"))
For Idofn = 1 To NDIME
ParticTotMass (Idofn) += PartMas (Imode, Idofn)
Text += String.Format ("{0,12}", PartMas (Imode,
Idofn) .ToString ("0.000000"))
Next Idofn
Filel.WritelLine (Text)
Next Imode

TRt = Vomommmomomomomeooeomosossomeooososs oo o =m= " + vbCrLf
Text += " Sum"
For Idofn = 1 To NDIME
Text += String.Format ("{0,12}", ParticTotMass (Idofn).ToString("0.000000"))
Next Idofn
Filel.WritelLine (Text)
Filel.WriteLine ()

Text = ""
If ParticTotMass(l) < 0.85 Then

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 80

Text += "Warning! participating masses in X direction < 85%. §7.3.3.1
prescriptions not observed." + vbCrLf
Else
Text += "Participating masses in X direction >= 85%, as prescribed in NTC 2018
§7.3.3.1." + vbCrLf
End If
Filel.WriteLine (Text)

Text = ""
If ParticTotMass (2) < 0.85 Then
Text += "Warning! participating masses in Y direction < 85%. §7.3.3.1
prescriptions not observed." + vbCrLf
Else

Text += "Participating masses in Y direction >= 85%, as prescribed in NTC 2018
§7.3.3.1." + vbCrLf
End If
Filel.WriteLine (Text)
End Sub
Sub WriteSeismicForces (Filel As StreamWriter)

Dim Text As String

Text = vbCrLf

Text += " " + vbCrLf
Text += " RESPONSE SPECTRUM ANALYSIS" + vbCrLf

Text += " (Forces Method)" + vbCrLf

Text += " " + vbCrLf

Filel.WritelLine (Text)

Text = " Mode Period Spectral acceleration" + vbCrLf
Text += " no. (s) m/s2" + vbCrLf
Tt 7= Vormcoosmcoooomomosooooooomoosomeososonmmo=m= " + vbCrLf
For Imode = 1 To NROOT
Text += String.Format ("{0,7}", Imode.ToString ("####0")) + " w
Text += String.Format("{0,11}", Period(Imode).ToString("0.0000E+00")) + "

Text += String.Format("{0,11}", ModalAcc(Imode).ToString("0.0000E+00")) +

vbCrLf
Next Imode
Filel.WriteLine (Text)
'write C.Q.C. and S.R.S.S. forces
Text = "combinations of seismic forces" + vbCrLf
VISRE = Tomoooomomos oo s oo oo s e e e o e o= = e o = o o S S oS = W4k
vbCrLf
'Text += " Node | C.Q.C. Force | S.R.S.S. Force "o+
vbCrLf
'Text += " | Fx Fy | Fx Fy "o+
vbCrLf
VISRE = Tomoooomomos oo s oo oo s e e e o e o= = e o = o o S S oS = W4k
vbCrLf
TERE 7= Vormmoosooooooooosooooooooosooooooomo=m= " + vbCrLf
Text += " Node | C.Q.C. Force |" + vbCrLf
Text += " | Fx Fy |" + vbCrLf
Tt 7= Voomcoosoooooscoosooooommoosooosoocmm=ms " + vbCrLf
For Ipoin = 1 To Npoin
Text += String.Format ("{0,8}", Ipoin.ToString ("####0")) + " "
Text += String.Format ("{0,11}", SeismicForceCQC (Ipoin,
1) .ToString ("0.0000E+00")) + " ®
Text += String.Format ("{0,11}", SeismicForceCQC (Ipoin,
2) .ToString ("0.0000E+00"™)) + " " + vbCrLf
'Text += String.Format ("{0,11}", SeismicForceSRSS (Ipoin,
1) .ToString ("0.0000E+00")) + " ®
'Text += String.Format ("{0,11}", SeismicForceSRSS (Ipoin,
2) .ToString ("0.0000E+00")) + vbCrLf
Next Ipoin
VIR = Vocoooo oo oo s s s s e s e o e e O 5 O e e 5 O e e e 5 o e e "o+

vbCrLf

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 81

WHRe, 7= Womsooooooosooosoooso oo o oos o oo oosooD= " + vbCrLf
Text += "base shear "

Text += String.Format ("{0,11}", ShearForcesCQC(l, 1).ToString("0.0000E+00"™)) + "

" 'ShearForcesCQC (Ipoin, Idime)

Text += String.Format ("{0,11}", ShearForcesCQC(l, 2).ToString("0.0000E+00"™)) + "

" + vbCrLf

'Text += String.Format("{0,11}", ShearForcesSRSS(l, 1).ToString("0.0000E+00")) +

" " 'ShearForcesSRSS (Ipoin, Idime)

'Text += String.Format("{0,11}", ShearForcesSRSS(l, 2).ToString("0.0000E+00")) +

vbCrLf
Filel.WriteLine (Text)

End Sub

Function ElemLen (Inodl As Integer, Inod2 As Integer) As Single
Dim dx, dy, dz, XYlen As Single

ElemLen = 0

dx = Xcoor (Inod2) - Xcoor (Inodl)
dy = Ycoor (Inod2) - Ycoor (Inodl)
dz = Zcoor (Inod2) - Zcoor (Inodl)

XYlen = Math.Sgrt(dx ~ 2 + dy © 2)
ElemLen = Math.Sgrt (XYlen ~ 2 + dz * 2)

End Function

Sub WriteSpectrumDisp(Filel As StreamWriter)
Dim Text, Textl, Text2 As String
Call WriteSpectrum(Filel)

Text = vbCrLf : Text += vbCrLf

Text += " W
Text += " RESPONSE SPECTRUM ANALYSIS" + vbCrLf

Text += " (Displacements Method)" + vbCrLf

Text += " "

Filel.WriteLine (Text)

+ vbCrLf

'+ vbCrLf

'print displacements of the simple oscillator, in spectrum response

Text = vbCrLf
Text += "Nodes displacements / rotations" + vbCrLf

WepRe, = Vooooooooooomooomooomoooooooooo= " + vbCrLf
Text += " Node eigen" + vbCrLf
Text += " number vector X-displac. Y-displac. Z-displac.

rotation ZZ-rotation" '+ vbCrLf
Filel.WriteLine (Text)

For Ipoin = 1 To Npoin
Text = String.Format ("{0,6}", Ipoin.ToString ("#####0"))
For Iroot = 1 To NROOT
If Iroot > 1 Then Text = " "

XX-rotation YY-

Text += String.Format("{0,8}", Iroot.ToString ("#####0")) + "™ "
For Idofn = 1 To NDOFN
Text += String.Format ("{0,13}", SpecDisp (Iroot,

Idofn) .ToString ("0.00000E+00"))
Next Idofn
Filel.WritelLine (Text)
Next Iroot
Next Ipoin

If IfCQC Then
Textl = "Complete Quadratic Combinations (C.Q.C.)"

Ipoin,

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis

82

Text2 = "C.Q.C."

Else
Textl = "Square Root of Sum of Squares combinations (S.R.S.S.)"
Text2 = "S.R.S.S."
End If
Text = vbCrLf : Text += vbCrLf
Text += " " + vbCrLf
Text += " COMBINATIONS OF RESPONSE SPECTRUM RESULTS" + vbCrLf
Text += "with " + Textl + vbCrLf
Text += " " '+ vbCrLf

Filel.WriteLine (Text)

Text = vbCrLf

Text += "*** "+ Text2 + " DI SPLACEMENTS ***" 4+ vbCrLf

Text += vbCrLf

Text += " NODE X-displ. Y-displ. Z-displ. XX-rotat. YY-
rotat. ZZ-rotat."

Filel.WriteLine (Text)

For Ipoin = 1 To Npoin

Text = String.Format ("{0,5}", Ipoin.ToString ("####0")) + " "
For Idofn = 1 To NDOFN
Text += String.Format ("{0,15}", Displ (0, Ipoin,

Idofn) .ToString ("0.0000E+00"))
Next Idofn
Filel.WritelLine (Text)

Next Ipoin

End Sub

Function ModalAccelerationCalc (Imode As Integer)
Dim DeltaX, Pend As Single
ModalAccelerationCalc = Spectrum(l, 2) * Gaccel
For Ipoin = 2 To NpoiSpec

If Spectrum(Ipoin, 1) > Period(Imode) Then
'interpolate the acceleration

DeltaX = Period(Imode) - Spectrum(Ipoin - 1, 1)
Pend = (Spectrum(Ipoin, 2) - Spectrum(Ipoin - 1, 2)) / (Spectrum(Ipoin,
1) - Spectrum(Ipoin - 1, 1))
ModalAccelerationCalc = (Spectrum(Ipoin - 1, 2) + Pend * DeltaX) * Gaccel
Exit Function
End If

Next Ipoin

End Function

Sub WriteSpectrum(Filel As StreamWriter)

Dim Textl As String
Dim Nrows, Icoun As Integer

Nrows = Int (NpoiSpec / 5)

Textl = "Response Design Spectrum (acceleration vs. period)" + vbCrLf

Textl += "Elastic accelerations are divided by the behaviour Factor (g = "

Textl += String.Format ("{0,4}", BehFact.ToString("0.00")) + ")" + vbCrLf

TRt = Vormmoocccomomoooeee e e e e E e s e e e e e S e C e e e e e S e e e eSS S eSS eSS S e
—————————————————————————————————————— " + vbCrLf

Textl += " period ag/g period ag/g period ag/g
period ag/g period ag/g " + vbCrLf

TRt = Vormmoocccomomoooeee e e e e E e s e e e e e S e C e e e e e S e e e eSS S eSS eSS S e
—————————————————————————————————————— " + vbCrLf

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 83

For Ipoin = 1 To Nrows
For Icoup = 1 To 5
Icoun += 1

Textl += String.Format ("{0,11}", Spectrum (Icoun,
1) .ToString ("0.0000E+00"))
Textl += String.Format ("{0,11}", Spectrum (Icoun,

2) .ToString ("0.0000E+00"))
Next Icoup
Textl += vbCrLf
Next Ipoin

For Icoul = Icoun + 1 To NpoiSpec
Textl += String.Format ("{0,11}", Spectrum(Icoun, 1l).ToString("0.0000E+00"))
Textl += String.Format ("{0,11}", Spectrum(Icoun, 2).ToString("0.0000E+00"))
Next Icoul
Textl += vbCrLf

Filel.WriteLine (Textl)

End Sub

Sub SeismicForcesCalculationCQC ()
'calculation of seismic forces with Forces Method

Dim Disp As Double

Dim SeismicForce (NROOT, Npoin, NDIME) , ShearForces (NROOT, Npoin, NDIME) ,
BaseShearForce (NROOT, NDIME) As Double

ReDim ModalAcc (NROOT)

ReDim SeismicForceCQC (Npoin, NDIME)

ReDim ShearForcesCQC (Npoin, NDIME)

For Imode = 1 To NROOT
ModalAcc (Imode) = ModalAccelerationCalc (Imode)
For Ipoin = 1 To Npoin
For Idime = 1 To NDIME
Disp = Displ (Ncase + NCOMB + Imode, Ipoin, Idime)
SeismicForce (Imode, Ipoin, Idime) = NodalMass (Ipoin) “ Digp *
PartFact (Imode, Idime) * ModalAcc (Imode)
BaseShearForce (Imode, Idime) += SeismicForce (Imode, Ipoin, Idime)
Next Idime
Next Ipoin
Next Imode

'transform seismic forces in storey shears
For Imode = 1 To NROOT
For Idime = 1 To NDIME

ShearForces (Imode, Npoin, Idime) = SeismicForce (Imode, Npoin, Idime)
For Ipoin = Npoin - 1 To 1 Step -1
ShearForces (Imode, Ipoin, Idime) = ShearForces (Imode, Ipoin + 1,

Idime) + SeismicForce (Imode, Ipoin, Idime)
Next Ipoin
Next Idime
Next Imode

'complete quadratic combinations C.Q.C. of shear forces (D.M. 14.01.2018)
For Jmode = 1 To NROOT
For Imode = 1 To NROOT
For Ipoin = 1 To Npoin
ShearForcesCQC (Ipoin, 1) += Roij (Imode, Jmode) * ShearForces (Imode,
Ipoin, 1) * ShearForces (Jmode, Ipoin, 1)
ShearForcesCQC (Ipoin, 2) += Roij (Imode, Jmode) * ShearForces (Imode,
Ipoin, 2) * ShearForces (Jmode, Ipoin, 2)
Next Ipoin
Next Imode
Next Jmode

For Ipoin = 1 To Npoin
ShearForcesCQC (Ipoin, 1) = Math.Sqgrt (ShearForcesCQC (Ipoin, 1))

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 84

ShearForcesCQC (Ipoin, 2) = Math.Sqgrt (ShearForcesCQC (Ipoin, 2))
Next Ipoin

'and now, finally, calculate storey forces as differences of storey shears
For Idime = 1 To NDIME

SeismicForceCQC (Npoin, Idime) = ShearForcesCQC (Npoin, Idime)
Next Idime
For Ipoin = Npoin - 1 To 1 Step -1

For Idime = 1 To NDIME

SeismicForceCQC (Ipoin, Idime) = ShearForcesCQC (Ipoin, Idime) -
ShearForcesCQC (Ipoin + 1, Idime)

Next Idime

Next Ipoin

End Sub

Sub STRBER (Icase As Integer, Nelel As Integer, Nele2 As Integer, FileWork3 As String)

'STRESS CALCULATION FOR BEAM OR WINKLER ELEMENTS
'in the case of Response Spectrum Analysis

Dim Index, Idofn, Idofl, Ldofn As Integer
Dim GlobDisp (), LocDisp(), LocLoa(), Force(,), Sum, Stres(NEVAB) As Double
Dim Toler As Double = 0.0000000001

Using sr As StreamReader = File.OpenText (FileWork3) 'stiffness LOCAL matrices file
' *x* TLOOP OVER ELEMENTS
For Ielem = Nelel To Nele2

'read stiffness matrix
For Icolu = 1 To 78

Stiff (Icolu) = sr.ReadLine
Next Icolu

ReDim Force (NEVAB, NROOT)

For Iroot = 1 To NROOT
'calculate displacements LocDisp () and NOT equivalent forces LocLoa ()
in local coordinates
'transformation T matrices are calculated only once after reading data
ReDim GlobDisp (NEVAB), LocDisp (NEVAB), LocLoa (NEVAB)

For Idofn = 1 To NDOFN
Idofl = Idofn + NDOFN
GlobDisp (Idofn) = SpecDisp(Iroot, Incl(Ielem), Idofn)
GlobDisp (Idofl) = SpecDisp(Iroot, Inc2(Ielem), Idofn)
Next Idofn

For Idofn = 1 To NDOFN
Idofl = Idofn + NDOFN
For Jdofn = 1 To NDOFN
Ldofn = Jdofn + NDOFN
LocDisp (Idofn) += Tmat (Ielem, Idofn, Jdofn) * GlobDisp (Jdofn)
LocDisp (Idofl) += Tmat (Ielem, Idofn, Jdofn) * GlobDisp (Ldofn)
Next Jdofn
Next Idofn

'calculate forces in local system: [K] u = £
For Ievab = 1 To NEVAB
Sum = 0

For Jevab = 1 To NEVAB
Index = Kpos (Ievab, Jevab)
Sum += Stiff (Index) * LocDisp (Jevab)
Next Jevab
Force (Ievab, Iroot) = Sum
Next Ievab
Next Iroot

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 85

ReDim Stres (NEVAB)
For Ievab = 1 To NEVAB
If IfCQC Then
'Complete Quadratic Combinations (C.Q.C.) of displacements
For Jmode = 1 To NROOT
For Imode = 1 To NROOT
Stres (Ievab) += Roij (Imode, Jmode) * Force (Ievab, Imode)
* Force (Ievab, Jmode)
'Stres (Ievab) += Roij (Imode, Jmode) *
Math.Abs (Force (Ievab, Imode)) * Math.Abs (Force(Ievab, Jmode))
Next Imode
Next Jmode
Else
'Square Root of Sum of Squares (S.R.S.S.) combinations of
displacements
For Iroot = 1 To NROOT
Stres (Ievab) += Force(Ievab, Iroot) " 2
Next Iroot
End If
Stres (Ievab) = Math.Sqgrt (Stres(Ievab))
Next Ievab

For Ievab = 1 To NEVAB
If Math.Abs (Stres (Ievab)) < Toler Then Stres(Ievab) = 0.0

Next Ievab

'store values in Strel(,,), Stre2(,,) matrices
For Idofn = 1 To NDOFN
Strel (Icase, Ielem, Idofn) -Stres (Idofn)
Stre2 (Icase, Ielem, Idofn) = Stres(Idofn + NDOFN)
Next Idofn
Next Ielem
End Using

End Sub

Sub RoijCalc()
'calculation of C.Q.C. Roij correlation coefficients

Dim Betaij As Double
ReDim Roij (NROOT, NROOT)

For Imode = 1 To NROOT
For Jmode = 1 To NROOT
'Betaij = Period(Jmode) / Period (Imode)
Betaij = CircFreqg(Imode) / CircFreq(Jmode)
Roij (Imode, Jmode) = 8 * DampCsi ~ 2 * Betaij ~ 1.5
Roij (Imode, Jmode) /= (1 + Betaij)
Roij (Imode, Jmode) / ((1 - Betaij) ~ 2 + 4 * DampCsi ~ 2 * Betaij)
Next Jmode
Next Imode

End Sub

3-D Beam Finite Element Programming - A Practical Guide: Part 2 — Dynamic Modal Analysis 86

