

Paolo Varagnolo Ingegneria – info@studioingegneriavaragnolo.com

3-D Beam Finite Element Programming - A Practical Guide
Part 2 – Dynamic Modal Analysis

(Software Included)
July 2024

Paolo Varagnolo: freelance engineer - Italy, info@studioingegneriavaragnolo.com

Private Practice

mailto:info@studioingegneriavaragnolo.com
mailto:info@studioingegneriavaragnolo.com

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 2

Contents

1 Introduction 3

2 Eigenvalues and eigenvectors solution 3

2.1 Storage scheme of the global stiffness and mass matrices 4

2.2 Consistent and lumped mass matrix 5

2.3 Examples of the Subspace Iteration Method 6

3 Modal participation factors and participating masses 10

4 Definition of the response spectrum 18

5 Calculation of seismic forces 18

5.1 SRSS combination 19

5.2 CQC combination 20

5.3 Displacements methods in RSA 21

5.4 Forces method in RSA 24

6 Calculation Examples 25

6.1 Example 1 – Antennas Pole 1 26

6.2 Example 2 – PM3 29

6.3 Example 3 – Participant Masses 1 31

6.4 Example 4 – PM_M1 35

7 Final Remarks 38

8 Bibliography 39

9 Appendix A – Program Sspace 40

9.1 Global scope variables 41

9.2 Other Subroutines 41

10 Appendix B – Program MdFem 59

10.1 Input data 60

10.2 Global scope variables 62

10.3 Inizializations and array dimensioning 62

10.4 Other Subroutines 63

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 3

1 Introduction

After having presented the static analysis features of the finite element program MdFem (Mono

dimensional Finite Element Method) in [9], in this paper one type of dynamic analysis is described.

As for the static analysis, here too the main reference is the procedures described by K. J. Bathe in

[1].

The programming language of MdFem is vb.net by Microsoft, instead of FORTRAN as in [1].

The purpose of this work is to provide a perfectly working program, with some practical tips on the

adopted techniques, with detailed, step by step explanations of some examples. The aim is to

provide a contribution to those who want to approach the finite element method (FEM), from the

programmer point of view.

The theoretical and mathematical framework will not be addressed, since it is already widely

available in many books and papers.

The MdFem program implements a 3-D Beam element. It is a straight, 2 nodes element: at each

node there are 3 translational and 3 rotational degrees of freedom (dof). This element is capable of

transmitting axial and shear forces, along with torque and bending moments.

There are two main approaches in dynamic analysis: 1) Modal Response Spectrum Analysis; 2)

Direct step by step Integration. Both methods are contemplated by European normative [7], but

the first is simpler and mostly used, therefore this is the method described below.

Modal Response Spectrum Analysis implies the following steps:

1) eigenvalues and eigenvectors solution;

2) modal participation factors and participating masses calculation;

3) definition of the response spectrum (spectra);

4) calculation of seismic forces from spectrum accelerations.

In the following, the four topics will be described.

2 Eigenvalues and eigenvectors solution

The method used in this paper is the Subspace Iteration Method, developed by K. J. Bathe and fully

described in [1]. The original program published in [1] has been translated in vb.net language: the

routines involved in the method have been first tested with some examples, and then they have

been added to the static program published in [9].

“The basic objective of the subspace iteration method is to solve for the lowest p eigenvalues and

corresponding eigenvectors satisfying”

[𝐾] [ϕ] = [𝑀] [ϕ][Λ]

where:

[𝐾] is the global stiffness matrix of the structure (here stored in compacted form);

[ϕ] is the matrix containing the eigenvectors [ϕ1, , ϕ𝑝];

[𝑀] is the mass matrix (also stored in compacted form);

[Λ] is a diagonal matrix containing the eigenvalues λ1, , λ𝑝.

The storage of matrices in compacted form has been explained in [9] but is briefly showed in the

next sub section.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 4

For the structural problems considered in this article the eigenvalues 𝜆𝑖 are the free vibration

frequencies squared, 𝜔𝑖
2. The following expressions therefore apply:

- circular frequencies 𝜔𝑖 = √𝜆𝑖 (rad/s)

- natural frequencies 𝜈𝑖 = 𝜔𝑖/(2𝜋)

- periods 𝑇𝑖 = 1/𝜈𝑖

2.1 Storage scheme of the global stiffness and mass matrices
The global stiffness matrix [𝐾] and the mass matrix [𝑀] of the structure are stored in compacted

form with the active columns scheme as described in [1]. Only the part of the matrix below the

skyline and including the diagonal is stored in a one-dimensional array [𝐴] for the stiffness matrix

and [𝐵] for the mass matrix. In order to know the addresses of the [𝐾], [𝑀] elements in [𝐴], [𝐵],

the positions of the diagonal elements are stored in the array MAXAD(), and the number of non-

zero elements above the diagonal element is stored in the array MCOLH(). The following figure

shows the storage scheme of the global mass matrix in the array [𝐵].

In the program MdFem the total number of degrees of freedom of the structure in called NDOFT,

while the total number of elements below the skyline is called NKGLO for the stiffness matrix and

NMGLO for the mass matrix.

In the MdFem program, array [𝐴] is called GLOBK(NKGLO) and array [𝐵] is called GLOBM(NMGLO).

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 5

2.2 Consistent and lumped mass matrix
To represent the mass distribution of a structure in a finite element model, the mass of an element

is proportionally applied to its nodes. There are two methods to convert the element mass into a

matrix referred to the degrees of freedom of the nodes: the mass matrix can be consistent or

lumped.

Consistent mass matrix

The consistent mass matrix 𝑀𝑒 of an element is calculated with the same shape functions used for

the calculation of the stiffness matrix, with the expression:

𝑀𝑒 = ∫ [𝑁]𝑇𝜌 [𝑁] 𝑑𝑉
⬚

𝑉𝑒

where:

[𝑁] = element shape function matrix

𝜌 = material mass density

Ve = element volume

The program MdFem uses the following closed form expression provided by Katsikadelis in [6].

𝑀𝑒 = [
𝑚𝑗𝑗 𝑚𝑗𝑘

𝑚𝑘𝑗 𝑚𝑘𝑘
]

where:

𝑚𝑗𝑗 =
𝑚𝑒

420

[

140 0 0 0 0 0
0 156 0 0 0 22𝐿
0 0 156 0 −22𝐿 0
0 0 0 140𝑟𝐺

2 0 0

0 0 −22𝐿 0 4𝐿2 0
0 22𝐿 0 0 0 4𝐿2]

𝑚𝑘𝑘 =
𝑚𝑒

420

[

140 0 0 0 0 0
0 156 0 0 0 −22𝐿
0 0 156 0 22𝐿 0
0 0 0 140𝑟𝐺

2 0 0

0 0 22𝐿 0 4𝐿2 0
0 −22𝐿 0 0 0 4𝐿2]

𝑚𝑘𝑗 =
𝑚𝑒

420

[

70 0 0 0 0 0
0 54 0 0 0 13𝐿
0 0 54 0 −13𝐿 0
0 0 0 70𝑟𝐺

2 0 0

0 0 13𝐿 0 −3𝐿2 0
0 −13𝐿 0 0 0 −3𝐿2]

𝑚𝑗𝑘 = (𝑚𝑘𝑗)
𝑇

Where:

𝑚𝑒 = 𝜌𝐴𝐿 is the total mass of element e;

𝑟𝐺 = √𝐽𝑇0/𝐴 is the radius of gyration of the cross-section;

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 6

Lumped mass matrix

The lumped mass matrix is simpler: in this approach the mass is lumped equally onto the nodes,

and is associated only to the translational degrees of freedom. The diagonal elements of the mass

matrix related to the translational degrees of freedom are the reactions of a simply supported

beam.

The lumped mass matrix is:

𝑚𝑗𝑗 =

[

𝑚1 0 0 0 0 0
0 𝑚1 0 0 0 0
0 0 𝑚1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

𝑚𝑘𝑘 =

[

𝑚2 0 0 0 0 0
0 𝑚2 0 0 0 0
0 0 𝑚2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

𝑚𝑗𝑘 = 𝑚𝑘𝑗 = 0

Where:

𝑚1 = 𝑚2 = 𝜌𝐴𝐿 / 2 = half of the element mass

2.3 Examples of the Subspace Iteration Method
The program Sspace from [1], translated in vb.net language, is listed in Appendix A. In the following

some examples are presented, in order to verify the correctness of the new implementation.

Example 12.1 from “Finite Element Procedures in Engineering Analysis” [1]

The data reported in the reference are:

𝐾 = [
 2 −1 0
−1 4 −1
 0 −1 2

] 𝑀 = [
0.5 0 0
0 1 0
0 0 0.5

]

The input data for the program are listed below.

TITLE: example 12.1 Bathe
NDOFT
 3
NKGLO
 5
NMGLO
 3
NROOT
 2
MAXAD
 1
 2
 4
 6

global stiffness matrix in compacted form
 2.0E+00
 4.0E+00
 -1.0E+00
 2.0E+00
 -1.0E+00
global mass matrix in compacted form
 0.5E+00
 1.0E+00
 0.5E+00

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 7

The following table shows the results published in [1], calculated by hand with 9 iterations, and

those calculated by the program Sspace().

Eigenvalues Eigenvectors

[1] Sspace [1] Sspace [1] Sspace

2 2 0.7057 0.70711 1.001 1.0

4 4 0.7071 0.70711 0.001 3.77E-15

 0.7085 0.70711 -0.999 -1.0

Example 12.3 from “Finite Element Procedures in Engineering Analysis” [1]

The data reported in the reference are:

𝐾 = [

 2 −1 0 0
−1 2 −1 0
 0 −1 2 −1
 0 0 −1 1

] 𝑀 = [

0 0 0 0
0 2 0 0
0 0 0 0
0 0 0 1

]

The input data for the program are listed below.

TITLE: example 12.3 Bathe
NDOFN
 4
NKGLO
 7
NMGLO
 4
NROOT
 2
MAXAD
 1
 2
 4
 6
 8

global stiffness matrix in compacted form
 2.0E+00
 2.0E+00
 -1.0E+00
 2.0E+00
 -1.0E+00
 1.0E+00
 -1.0E+00
global mass matrix in compacted form
 0.0E+00
 2.0E+00
 0.0E+00
 1.0E+00

The following table shows the results published in [1], calculated by hand with 1 iteration, and those

calculated by the program Sspace().

Eigenvalues Eigenvectors

[1] Sspace [1] Sspace [1] Sspace

0.14645 0.14645 0.25 0.25 0.25 0.25

0.085355 0.085355 0.50 0.50 0.50 0.50

 0.60355 0.60355 0.10355 -0.10355

 0.70711 0.70711 0.70711 -0.70711

It must be noted that, if there are some zero masses in a diagonal (lumped) mass matrix, only one

iteration is needed with the subspace iteration method, as established in [1].

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 8

Example 1 from “Programma di calcolo SSPACE” [2]

The data reported in the reference are:

𝐾 = [

 2 −1 0 0
−1 2 −1 0
 0 −1 2 −1
 0 0 −1 1

] 𝑀 = [

3 0 0 0
0 2 0 0
0 0 4 0
0 0 0 1

]

The input data for the program are listed below.

TITLE: example 1 Boreggio Benà
NDOFN
 4
NKGLO
 7
NMGLO
 4
NROOT
 4
MAXAD
 1
 2
 4
 6
 8

global stiffness matrix in compacted form
 2.E+00
 2.E+00
 -1.E+00
 2.E+00
 -1.E+00
 1.E+00
 -1.E+00
global mass matrix in compacted form
 3.E+00
 2.E+00
 4.E+00
 1.E+00

The following table shows the results published in [2], and those calculated by the program

Sspace().

Eigenvalues

[2] Sspace

0.0517654 0.051765

0.464639 0.46464

1.1714 1.1714

1.47886 1.4789

Eigenvectors

[2] Sspace [2] Sspace [2] Sspace [2] Sspace

0.1548 0.15483 0.4634 0.46336 -0.2471 -0.24706 0.1834 0.18336

0.2856 0.28561 0.2808 0.28083 0.3741 0.37410 -0.4468 -0.44678

0.3868 0.38682 -0.1627 -0.16266 0.1188 0.11882 0.2445 0.24452

0.4079 0.40794 -0.3038 -0.30384 -0.6932 -0.69319 -0.5106 -0.51064

The results listed in [2] have been checked with the program CAL78, written by professor Edward

L. Wilson of the University of California, Berkeley.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 9

Example 2 from “Programma di calcolo SSPACE” [2]

The data reported in the reference are:

𝐾 = [

 5 −4 1 0
−4 6 −4 1
 1 −4 6 −4
 0 1 −4 5

] 𝑀 = [

2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

]

The input data for the program are listed below.

TITLE: example 2 Boreggio Benà
NDOFN
 4
NKGLO
 9
NMGLO
 4
NROOT
 4
MAXAD
 1
 2
 4
 7
 10

global stiffness matrix in compacted form
 5.E+00
 6.E+00
 -4.E+00
 6.E+00
 -4.E+00
 1.E+00
 5.E+00
 -4.E+00
 1.E+00
global mass matrix in compacted form
 2.E+00
 2.E+00
 1.E+00
 1.E+00

The following table shows the results published in [2], and those calculated by the program

Sspace().

Eigenvalues

[2] Sspace

0.0965373 0.096537

1.39147 1.3915

4.37355 4.3735

10.6384 10.638

Eigenvectors

[2] Sspace [2] Sspace [2] Sspace [2] Sspace

0.3126 0.31263 0.4453 0.44527 -0.4387 -0.43867 -0.1076 -0.10756

0.4955 0.49548 0.1244 0.12444 0.4167 0.41674 0.2556 0.25563

0.4791 0.47912 -0.4894 -0.48944 0.02322 0.023222 -0.7283 -0.72825

0.2898 0.28979 -0.5770 -0.57702 -0.5170 -0.51697 0.5620 0.56197

The results listed in [2] have been checked with the program CAL78, written by professor Edward

L. Wilson of the University of California, Berkeley.

The differences are only due to the different significant digits used to write the values.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 10

3 Modal participation factors and participating masses

The participation factor [Γ𝑗] for mode j, in the direction i, indicates how strongly motion in the

generalized directions 1÷6 (x, y, z, xx, yy, zz) is represented in the eigenvector of this mode. It is

defined as:

[Γ𝑗] =
[𝜙𝑗]

𝑇
[𝑀] [𝑟𝑖]

[𝜙𝑗]
𝑇
[𝑀] [𝜙𝑗]

(3.1)

where:

[𝜙𝑗] is the eigenvector j

[𝑀] is the global mass matrix of the structure

[𝑟𝑖] is the influence matrix which represents the displacements of the masses resulting from static

application of a unit ground displacement. The influence vector induces a rigid body motion in

all modes.

[𝜙𝑗]
𝑇
[𝑀] [𝜙𝑗] is the generalized mass m

Eigenvalues are only determined up to an arbitrary scalar factor, i.e. if [𝜙𝑗] is an eigenvector, also

c [𝜙𝑗] is an eigenvector (c is a real number). Eigenvectors are usually normalized such that its norm

equals 1 (normalized to unity), or such that [𝜙𝑗]
𝑇
[𝑀] [𝜙𝑗] = 1 (normalized to the mass matrix).

The eigenvectors calculated by the program presented in this paper are normalized to the mass

matrix.

The influence matrix is an identity matrix for the translational degrees of freedom (dof), while

contains the differences of the displacements with respect to a centre of rotation for the rotational

dof. In the present treatment only the participation factors and the participating masses for the

translational dof will be considered.

With these assumptions expression (3.1) becomes:

[Γ𝑗] = [𝜙𝑗]
𝑇
[𝑀]

(3.2)

The participating mass for the j mode is calculated with the following expression:

[𝑀𝑗] =
[Γ𝑗]

2

𝑚𝑡𝑜𝑡

Where:

𝑚𝑡𝑜𝑡 is the total mass of the structure.

Italian building code (NTC 2018 §7.3.3.1) prescribes that the number of calculated modes must

involve at least 85% of the total mass in each of the x, y directions; other codes request a slightly

different percentage.

The routine that calculates participation factors and participating masses is presented below.

Matrix EigenVec(NDOFT, NROOT) contains the eigenvectors calculated in Sub Sspace, where

NROOT is the number of requested modes.

Vector TotalMass(NDOFT) is calculated in Sub ADDBAN_Mass and in Sub AddLoadMass listed in

Appendix B.

Paolo Varagnolo Ingegneria – info@studioingegneriavaragnolo.com

 Sub ParticipantMassesCalculation(EigenVec(,) As Double)

 'calculate participation factors pfj and participant masses pmj in each mode j

 'given: EigenVec(NDOFT, NROOT) calculated eigenvectors
 ' TotalMass(Idofn) = total mass previously calculated

 Dim Icoun, Jcoun, Ibase, Idire, Mass(NDOFT) As Integer
 Dim Product(NROOT, NDOFT), Sum As Double
 ReDim PartFact(NROOT, NDOFN), PartMas(NROOT, NDOFN)

 'find positions of (x, y, z) masses in the global mass matrix
 Icoun = 0
 For Ipoin = 1 To Npoin
 For Idofn = 1 To NDOFN
 If IDDOF(Idofn, Ipoin) > 0 Then
 Icoun += 1
 If Icoun <= NDOFT Then 'And Idofn <= 3 Then
 Mass(Icoun) = Idofn
 End If
 End If
 Next Idofn
 Next Ipoin

 'calculation of Modal Participation Factors
 If IfLumped Then
 'product of eigenvectors (transpose) by lumped mass matrix: FTxM
 For Iroot = 1 To NROOT
 For Idofn = 1 To NDOFT
 Product(Iroot, Idofn) = EigenVec(Idofn, Iroot) * GLOBM(Idofn)
 Next Idofn
 Next Iroot
 Else
 'product of eigenvectors (transpose) by consistent mass matrix: FTxM
 For Iroot = 1 To NROOT
 For Idofn = 1 To NDOFT
 Sum = 0

 'calculate number of elements above the skyline
 Icoun = Idofn - MCOLH(Idofn) - 1

 'loop on elements above the diagonal and under the skyline
 For i% = MAXAD(Idofn) + MCOLH(Idofn) To MAXAD(Idofn) Step -1
 Icoun += 1
 Sum += EigenVec(Icoun, Iroot) * GLOBM(i%)
 Next i%
 'loop on the elements under the diagonal (= elements on the row)
 Jcoun = 0
 For i% = Idofn + 1 To NDOFT
 Icoun += 1
 Jcoun += 1
 Ibase = MAXAD(i%)
 If MCOLH(i%) >= Jcoun Then
 Sum += EigenVec(Icoun, Iroot) * GLOBM(Ibase + Jcoun)
 End If
 Next i%
 Product(Iroot, Idofn) = Sum
 Next Idofn
 Next Iroot
 'Call Control_FTxMxF(Product, EigenVec) 'must be the Identity matrix: FTxMxF = I
 End If

 'calculate Modal Participation Factors in (x, y, z, rx, ry, rz) directions
 For Iroot = 1 To NROOT
 For Idofn = 1 To NDOFT
 Idire = Mass(Idofn)
 PartFact(Iroot, Idire) += Product(Iroot, Idofn)
 Next Idofn

mailto:info@studioingegneriavaragnolo.com

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 12

 Next Iroot

 'calculation of Modal Participating masses
 For Iroot = 1 To NROOT
 For Idime = 1 To NDIME
 If TotalMass(Idime) <> 0 Then
 PartMas(Iroot, Idime) = PartFact(Iroot, Idime) ^ 2 / TotalMass(Idime)
 End If
 Next Idime
 Next Iroot

 End Sub

Follows a detailed calculation of participating masses as performed by the previous routine,

referring to Example 2, whose data are shown in the next figure.

There are no concentrated or distributed loads, therefore the total mass mTOT on not restrained dof

is:

mTOT = 2.5491996 x 0.32 x (2 x 1.5 + 5) = 6.525951

From the figure we see that the total number of degrees of freedom NDOFT = 8, while the positions

of (x, y, z) masses in array Mass(1÷NDOFT) are:

dof
disp/rot

1
x-disp

2
y-disp

3
z-disp

4
yy-rot

5
x-disp

6
y-disp

7
z-disp

8
yy-rot

Mass(Idofn) 1 2 3 0 1 2 3 0

Next calculation is the product of [𝜙𝑗]
𝑇
[𝑀] (rows by columns). Follows the [𝜙𝑗]

𝑇
matrix:

 each row contains the eigenvector calculated for each vibration mode

 each column contains the contributions of the modes to a single dof

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 13

The example here reported deals with the lumped mass matrix, that is listed here under (empty

values are zeros):

The product row by columns gives the following matrix:

The multiplication gives the participation factors contributions split on the degrees of freedom of

the FEM model. Adding the corresponding contributions (col. 1 + col. 5, col. 2 + col. 6, col. 3 + col.

7, col. 4 + col. 8) the final participation factors are obtained, as listed in the next table. On the right

the values calculated by Sap4 are listed.

Finally, the participating masses are calculated as participation factors squared, divided by the total

mass. The result is listed below.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 14

Next images and tables refer to the same structure, calculated with consistent mass matrices.

In the routine ParticipantMassesCalculation, after the multiplication [𝜙𝑗]
𝑇
[𝑀], there is a

commented line that hides a call to the routine Control_FTxMxF(Product, EigenVec): some

(positive) controls have been made in order to verify that the product [𝜙𝑗]
𝑇
[𝑀] [𝜙] gives the

Identity matrix [𝐼].

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 15

When a consistent mass matrix is adopted, the product [𝜙𝑗]
𝑇
[𝑀] is

particular, due to the storage scheme of the mass matrix (see § 2.1).

The image on the left shows an example structure, useful to

understand the procedure adopted.

There is a total number of 9 degrees of freedom: the tables below

show the mass matrix GLOBM(NMGLO), the first eigenvector

transposed, vector MAXAD(NDOFT+1) and vector MCOLH(NDOFT).

The mass matrix is symmetric, so the product of the eigenvector by

the columns of the matrix follows the columns until it reaches the

diagonal element and then follow the row, from the diagonal element

to the right.

Furthermore, only the elements below the skyline are stored in the

one-dimensional GLOBM(NMGLO) array: for this reason, the

procedure must evaluate the degrees of freedom involved, in order

to associate the correct dof in the eigenvector with the correspondent

dof of the mass matrix.

Starting with the columns, the multiplication must skip a number of

elements equal to:

[Icoun = Idofn - MCOLH(Idofn) – 1]

Proceeding then with the rows, the multiplication is performed only if

MCOLH(current dof) is greater than the current dof.

When the eigenvector is multiplied by the 2nd dof, calling E() the eigenvector and M() the array

containing the mass matrix, the multiplication is:

E(1)xM(3)+ E(2)xM(2)+ E(3)xM(5)+ E(4)xM(9)+ E(5)xM(14)+ E(6)xM(20) = 0

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 16

And, when the eigenvector is multiplied by the 7th dof, the multiplication is:

E(4)xM(25)+ E(5)xM(24)+ E(6)xM(23)+ E(7)xM(22)+ E(8)xM(27)+ E(9)xM(33) = 0.191

Let us see in detail how the program performs the multiplication, referring to the first eigenvector,

for Idofn = 2.

Iroot = 1

Idofn = 2

 Sum = 0

 'calculate number of elements above the skyline
 Icoun = Idofn - MCOLH(Idofn) – 1 = 2 – 1 – 1 = 0

'loop on elements above the diagonal and under the skyline

For i% = MAXAD(2) + MCOLH(2) To MAXAD(2) Step -1 = 2 + 1 = 3 To 2 Step -1

 i% = 3: Icoun += 1 = 1

 Sum += EigenVec(1, 1) * GLOBM(3) = 0.649 * 0 = 0

 i% = 2: Icoun += 1 = 2

 Sum += EigenVec(2, 1) * GLOBM(2) = 0 * 0.292 = 0

Next i%

'loop on the elements under the diagonal (= elements on the row)

Jcoun = 0

For i% = Idofn + 1 To NDOFT = 2 + 1 = 3 To 9

 i% = 3: Icoun += 1 = 3

Jcoun += 1 = 1

Ibase = MAXAD(i%) = 4

If MCOLH(3) = 2 >= Jcoun = 1 (True) Then

 Sum += EigenVec(3, 1) * GLOBM(5) =

0. + 0.148 * 0 = 0 + 0 = 0

End If

 i% = 4: Icoun += 1 = 4

Jcoun += 1 = 2

Ibase = MAXAD(i%) = 7

If MCOLH(4) = 3 >= Jcoun = 2 (True) Then

 Sum += EigenVec(4, 1) * GLOBM(9) =

0. + 1.388 * 0 = 0 + 0 = 0

End If

 i% = 5: Icoun += 1 = 5

Jcoun += 1 = 3

Ibase = MAXAD(i%) = 11

If MCOLH(5) = 4 >= Jcoun = 3 (True) Then

 Sum += EigenVec(5, 1) * GLOBM(14) =

0. + 0 * 0.055 = 0 + 0 = 0

End If

 i% = 6: Icoun += 1 = 6

Jcoun += 1 = 4

Ibase = MAXAD(i%) = 16

If MCOLH(6) = 5 >= Jcoun = 4 (True) Then

 Sum += EigenVec(6, 1) * GLOBM(20) =

0 + 0.0.174 * 0 = 0 + 0 = 0

End If

 i% = 7: Icoun += 1 = 7

Jcoun += 1 = 5

Ibase = MAXAD(i%) = 22

If MCOLH(7) = 3 >= Jcoun = 5 (False) Then

End If

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 17

 i% = 8: Icoun += 1 = 8

Jcoun += 1 = 6

Ibase = MAXAD(i%) = 26

If MCOLH(8) = 4 >= Jcoun = 6 (False) Then

End If

 i% = 9: Icoun += 1 = 9

Jcoun += 1 = 7

Ibase = MAXAD(i%) = 31

If MCOLH(9) = 5 >= Jcoun = 7 (False) Then

End If

The product of the first eigenvector by the 2nd column of the mass matrix gives a zero value,

meaning that the participation factor of the first vibration mode on the 2nd dof (z displacement at

node 2) is null.

Let us see now in detail the multiplication, referring again to the first eigenvector, for Idofn = 7.

Iroot = 1

Idofn = 7

 Sum = 0

 'calculate number of elements above the skyline
 Icoun = Idofn - MCOLH(Idofn) – 1 = 7 – 3 – 1 = 3

'loop on elements above the diagonal and under the skyline

For i% = MAXAD(7) + MCOLH(7) To MAXAD(7) Step -1 = 22 + 3 = 25 To 22 Step -1

 i% = 25: Icoun += 1 = 4

 Sum += EigenVec(4, 1) * GLOBM(25) = 1.388 * 0.028 = 0.039

 i% = 24: Icoun += 1 = 5

 Sum += EigenVec(5, 1) * GLOBM(24) = 0.039 + 0 * 0 = 0.039

 i% = 23: Icoun += 1 = 6

 Sum += EigenVec(6, 1) * GLOBM(23) =

= 0.039 + 0.174 * 0.020 = 0.039 = 0.042

 i% = 22: Icoun += 1 = 7

 Sum += EigenVec(7, 1) * GLOBM(22) =

= 0.042 + 1.913 * 0.081 = 0.039 = 0.197

Next i%

'loop on the elements under the diagonal (= elements on the row)

Jcoun = 0

For i% = Idofn + 1 To NDOFT = 7 + 1 = 8 To 9

 i% = 8: Icoun += 1 = 8

Jcoun += 1 = 1

Ibase = MAXAD(i%) = 26

If MCOLH(8) = 4 >= Jcoun = 1 (True) Then

 Sum += EigenVec(8, 1) * GLOBM(27) =

= 0.197 + 0 * 0 = 0.197

End If

 i% = 9: Icoun += 1 = 9

Jcoun += 1 = 2

Ibase = MAXAD(i%) = 31

If MCOLH(9) = 5 >= Jcoun = 2 (True) Then

 Sum += EigenVec(9, 1) * GLOBM(33) =

0.197 + 0.176 * -0.034 = 0.197 + 0 = 0.191

End If

The participation factor of the first vibration mode on the 7th dof (x displacement at node 4) is 0.191.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 18

4 Definition of the response spectrum

The response spectrum is a function defining the acceleration of simple harmonic oscillators with

respect to the period, when they are subjected to a transient event. The response spectrum is a

function of the natural period or frequency of each oscillator and of several other parameters listed

below.

The response spectrum can be used to study the response of any linear system, also with many

degrees of freedom (multi-degree of freedom systems), given its natural frequencies of oscillation.

The spectrum can be defined applying the rules given by any national building code, as a function

of the site, the type of soil, the damping of the structure, the topographical conditions, and the

behaviour factor. It has the shape shown in the next figure. The design spectrum is derived from

the elastic one, dividing the values by the behaviour factor, depending on the ductility of the

structure.

In the program MdFem the response spectrum is stored in a two-dimensional array, directly read

from the input file. The program reads only one parameter that can modify the spectrum, the

behaviour factor.

The program reads also the value of the viscous damping, but only to obtain the CQC combinations

described in the next paragraph.

5 Calculation of seismic forces

In the response spectrum analysis (RSA) the main idea is that, for each vibration period, the

maximum acceleration of the structure may be calculated with the response spectrum (of many

single dof pendulums).

The peak force on the pendulum oscillating mass is:

𝐹𝑚𝑎𝑥 = 𝑘 𝑦𝑚𝑎𝑥 = 𝑚 𝑎𝑚𝑎𝑥 (5.1)

since:

𝜔 = √
𝑘

𝑚

we can also write:

https://en.wikipedia.org/wiki/Linear

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 19

𝑦𝑚𝑎𝑥 =
𝑎𝑚𝑎𝑥

𝜔2
 (5.2)

Expressions (5.1) and (5.2) can be called the Forces Method and the Displacements Method in

Response Spectrum Analysis.

The distribution either of the forces or of the displacements in the structure, for mode j, is evaluated

multiplying 𝐹𝑚𝑎𝑥 or 𝑦𝑚𝑎𝑥 by the eigenvector 𝜙𝑗, obtaining:

[𝑓𝑗] = 𝜙𝑗 𝐹𝑚𝑎𝑥 (5.3)

[𝑢𝑗] = 𝜙𝑗 𝑦𝑚𝑎𝑥 (5.4)

From the calculated nodal displacements, the internal forces of each element are obtained

multiplying the element stiffness matrix by the displacements vector.

The above expressions (5.3), (5.4) must be evaluated for all the calculated periods, and then the

results must be combined.

The most common combination rules are the Complete Quadratic Combination (CQC) and the

Square Root of Sum of Squares (SRSS). Italian building code impose the CQC combination, while

Eurocode 8 for instance allows both the methods.

Some comments on the reliability of the methods can be found in [10].

5.1 SRSS combination
Referring to the calculated forces, displacements, or internal forces, as a generic vector [𝑣𝑗], the

SRSS combination is:

[𝑣] = √∑[𝑣𝑗]
2

𝑝

𝑗=1

The value of a single component 𝑣𝑘 of the vector is:

𝑣𝑘 = √∑𝑣𝑘𝑗
2

𝑝

𝑗=1

Index j runs from 1 to the number of calculated eigenvalues p.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 20

5.2 CQC combination
For simplicity we can directly refer to a single component 𝑣𝑘 of the generic vector [𝑣𝑗].

The combined value is:

𝑣𝑘 = √∑∑𝑣𝑘𝑖 𝜌𝑖𝑗 𝑣𝑘𝑗

𝑝

𝑗=1

𝑝

𝑖=1

For constant modal damping 𝜉, the cross-modal coefficients 𝜌𝑖𝑗 are calculated as:

𝜌𝑖𝑗 =
8𝜉2𝛽𝑖𝑗

3/2

(1 + 𝛽𝑖𝑗) [(1 − 𝛽𝑖𝑗)
2
+ 4𝜉2𝛽𝑖𝑗]

where:

𝛽𝑖𝑗 = 𝑇𝑗 𝑇𝑖⁄ is the ratio between the inverse of the vibration periods i, j.

The routine that calculates the cross-modal coefficients 𝜌𝑖𝑗 is presented below.

 Sub RoijCalc()
 'calculation of C.Q.C. Roij correlation coefficients

 Dim Betaij As Double

 ReDim Roij(NROOT, NROOT)

 For Imode = 1 To NROOT
 For Jmode = 1 To NROOT
 'Betaij = Period(Jmode) / Period(Imode)
 Betaij = CircFreq(Imode) / CircFreq(Jmode)
 Roij(Imode, Jmode) = 8 * DampCsi ^ 2 * Betaij ^ 1.5
 Roij(Imode, Jmode) /= (1 + Betaij)
 Roij(Imode, Jmode) /= ((1 - Betaij) ^ 2 + 4 * DampCsi ^ 2 * Betaij)
 Next Jmode
 Next Imode

 End Sub

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 21

5.3 Displacements methods in RSA
The routine that calculates the displacements of expression (5.4) is presented below.

The code is quite simple, due to the many comment lines and the self-explaining variables names.

In any case, a brief description of the operations is given.

The participation factors are simply summed in the three x, y, z directions in the case of CQC

combination, while the sum is made on the absolute values in the case of SRSS combination.

The subroutine calculates the displacements of every mode referring to the simple oscillator, and

then those of the structure multiplying the simple oscillator displacements by the eigenvectors.

Follow the CQC or SRSS combination of the displacements, depending on the boolean variable

IfCQC value.

Finally, spectrum displacements are stored in the array SpecDisp(Iroot, Ipoin, Idofn), and combined

displacements are stored in the array Displ(CurCase, Ipoin, Idofn) =CombStruDisp(Icoun)

 Sub SpectralResponse(EigenVec(,) As Double)

 'calculate Modal Response Spectrum analysis

 'given: EigenVec(NDOFT, NROOT) calculated eigenvectors

 Dim Icoun, Ldofn As Integer
 Dim PartFac, Force, Displa(NROOT), StruDisp(NDOFT, NROOT) As Double
 Dim Sum2 As Double
 ReDim SpecDisp(NROOT, Npoin, NDOFN), CombStruDisp(NDOFT)

 Dim Dire(3) As Single
 Dire(1) = 1 : Dire(2) = 1 : Dire(3) = 1

 'compute displacements of the simple oscillator and then those of the structure
 For Iroot = 1 To NROOT
 PartFac = 0
 For Idime = 1 To NDIME
 If IfCQC Then
 PartFac += PartFact(Iroot, Idime) * Dire(Idime)
 Else
 PartFac += Math.Abs(PartFact(Iroot, Idime)) * Dire(Idime)
 End If
 Next Idime

 Force = PartFac * ModalAccelerationCalc(Iroot)
 Displa(Iroot) = Force / CircFreq(Iroot) ^ 2 'displacement of the simple oscillator

 'calculation of structure displacements from the simple oscillator displacement
 For Idofn = 1 To NDOFT
 StruDisp(Idofn, Iroot) = EigenVec(Idofn, Iroot) * Displa(Iroot)
 Next Idofn
 Next Iroot

 'calculation of CQC or SRSS combinations of displacements for every d.o.f.
 Call RoijCalc() 'compute C.Q.C. Roij correlation coefficients (always needed with forces
method)
 For Idofn = 1 To NDOFT
 Sum2 = 0
 If IfCQC Then
 'Complete Quadratic Combinations (C.Q.C.) of displacements
 For Jmode = 1 To NROOT
 For Imode = 1 To NROOT
 Sum2 += Roij(Imode, Jmode) * StruDisp(Idofn, Imode) * StruDisp(Idofn,
Jmode)
 Next Imode
 Next Jmode

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 22

 Else
 'Square Root of Sum of Squares combinations (S.R.S.S.) of displacements
 For Imode = 1 To NROOT
 Sum2 += StruDisp(Idofn, Imode) ^ 2
 Next Imode
 End If

 CombStruDisp(Idofn) = Math.Sqrt(Sum2)
 Next Idofn

 'store spectrum displacements in SpecDisp(,,) array
 For Iroot = 1 To NROOT
 For Ipoin = 1 To Npoin
 For Idofn = 1 To NDOFN
 Ldofn = IDDOF(Idofn, Ipoin)
 If Ldofn > 0 Then
 SpecDisp(Iroot, Ipoin, Idofn) = StruDisp(Ldofn, Iroot)
 End If
 Next Idofn
 Next Ipoin
 Next Iroot

 'store spectrum displacement combinations in index 0 of displacements array
 CurCase = 0
 Icoun = 0
 For Ipoin = 1 To Npoin
 For Idofn = 1 To NDOFN
 If IDDOF(Idofn, Ipoin) > 0 Then
 Icoun += 1
 Displ(CurCase, Ipoin, Idofn) = CombStruDisp(Icoun)
 End If
 Next Idofn
 Next Ipoin

 End Sub

The displacements of the nodes are used to calculate the internal element forces, with the following

routine. A brief description of the operations is given also for this routine.

The first part refers to the transformation of the calculated global displacements in local

coordinates for each element. For the details of these calculations refer to Part 1 – Static Analysis

[9]. Multiplying the local element matrices by the local displacements, the internal element forces

are obtained.

Also for the internal forces it is necessary to combine the contributes of the vibration modes, either

with the CQC or with the SRSS method.

 Sub STRBER(Icase As Integer, Nele1 As Integer, Nele2 As Integer, FileWork3 As String)

 'STRESS CALCULATION FOR BEAM OR WINKLER ELEMENTS
 'in the case of Response Spectrum Analysis

 Dim Index, Idofn, Idof1, Ldofn As Integer
 Dim GlobDisp(), LocDisp(), LocLoa(), Force(,), Sum, Stres(NEVAB) As Double
 Dim Toler As Double = 0.0000000001

 Using sr As StreamReader = File.OpenText(FileWork3) 'stiffness LOCAL matrices file

 ' *** LOOP OVER ELEMENTS

 For Ielem = Nele1 To Nele2

 'read stiffness matrix

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 23

 For Icolu = 1 To 78
 Stiff(Icolu) = sr.ReadLine
 Next Icolu

 ReDim Force(NEVAB, NROOT)

 For Iroot = 1 To NROOT
 'calculate displacements LocDisp() and NOT equivalent forces LocLoa() in
local coordinates
 'transformation T matrices are calculated only once after reading data
 ReDim GlobDisp(NEVAB), LocDisp(NEVAB), LocLoa(NEVAB)

 For Idofn = 1 To NDOFN
 Idof1 = Idofn + NDOFN
 GlobDisp(Idofn) = SpecDisp(Iroot, Inc1(Ielem), Idofn)
 GlobDisp(Idof1) = SpecDisp(Iroot, Inc2(Ielem), Idofn)
 Next Idofn

 For Idofn = 1 To NDOFN
 Idof1 = Idofn + NDOFN
 For Jdofn = 1 To NDOFN
 Ldofn = Jdofn + NDOFN
 LocDisp(Idofn) += Tmat(Ielem, Idofn, Jdofn) * GlobDisp(Jdofn)
 LocDisp(Idof1) += Tmat(Ielem, Idofn, Jdofn) * GlobDisp(Ldofn)
 Next Jdofn
 Next Idofn

 'calculate forces in local system: [K] u = f
 For Ievab = 1 To NEVAB
 Sum = 0
 For Jevab = 1 To NEVAB
 Index = Kpos(Ievab, Jevab)
 Sum += Stiff(Index) * LocDisp(Jevab)
 Next Jevab
 Force(Ievab, Iroot) = Sum
 Next Ievab
 Next Iroot

 ReDim Stres(NEVAB)
 For Ievab = 1 To NEVAB
 If IfCQC Then
 'Complete Quadratic Combinations (C.Q.C.) of displacements
 For Jmode = 1 To NROOT
 For Imode = 1 To NROOT
 Stres(Ievab) += Roij(Imode, Jmode) * Force(Ievab, Imode) *
Force(Ievab, Jmode)
 'Stres(Ievab) += Roij(Imode, Jmode) * Math.Abs(Force(Ievab,
Imode)) * Math.Abs(Force(Ievab, Jmode))
 Next Imode
 Next Jmode
 Else
 'Square Root of Sum of Squares (S.R.S.S.) combinations of displacements
 For Iroot = 1 To NROOT
 Stres(Ievab) += Force(Ievab, Iroot) ^ 2
 Next Iroot
 End If
 Stres(Ievab) = Math.Sqrt(Stres(Ievab))
 Next Ievab

 For Ievab = 1 To NEVAB
 If Math.Abs(Stres(Ievab)) < Toler Then Stres(Ievab) = 0.0
 Next Ievab

 'store values in Stre1(,,), Stre2(,,) matrices
 For Idofn = 1 To NDOFN
 Stre1(Icase, Ielem, Idofn) = -Stres(Idofn)
 Stre2(Icase, Ielem, Idofn) = Stres(Idofn + NDOFN)
 Next Idofn
 Next Ielem

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 24

 End Using

 End Sub

5.4 Forces method in RSA
The routine that calculates the forces of expression (5.3) is presented below. For this method the

choice was made to use only CQC combination: actually, in some case SRSS combination leads to

bad results. Besides, the actual implementation is not completely satisfactory, though it works fine

in many cases. These cases include structures with regularity in plan and in elevation, as shown in

the application examples further on.

Anyway, this method needs more insights, that will be presented in the future.

Follow a brief description of the operations made by the routine.

For every vibration mode j, the spectral acceleration 𝑎𝑗 is calculated: then, at any node i, and for

the x, y, z directions the program calculates the product 𝐹𝑗𝑖 = 𝑚𝑖 𝜙𝑗𝑖 𝛾𝑗 𝑎𝑗.

The next operation, performed in the second main loop on the vibration modes, is to transform the

node forces in “storey” shears.

Follows the CQC combination of shear forces and the, finally, the calculation of “storey” forces as

difference of “storey“ shears.

 Sub SeismicForcesCalculationCQC()
 'calculation of seismic forces with Forces Method

 Dim Disp As Double

 Dim SeismicForce(NROOT, Npoin, NDIME), ShearForces(NROOT, Npoin, NDIME),
BaseShearForce(NROOT, NDIME) As Double
 ReDim ModalAcc(NROOT)
 ReDim SeismicForceCQC(Npoin, NDIME)
 ReDim ShearForcesCQC(Npoin, NDIME)

 For Imode = 1 To NROOT
 ModalAcc(Imode) = ModalAccelerationCalc(Imode)
 For Ipoin = 1 To Npoin
 For Idime = 1 To NDIME
 Disp = Displ(Ncase + NCOMB + Imode, Ipoin, Idime)
 SeismicForce(Imode, Ipoin, Idime) = NodalMass(Ipoin) * Disp *
PartFact(Imode, Idime) * ModalAcc(Imode)
 BaseShearForce(Imode, Idime) += SeismicForce(Imode, Ipoin, Idime)
 Next Idime
 Next Ipoin
 Next Imode

 'transform seismic forces in storey shears
 For Imode = 1 To NROOT
 For Idime = 1 To NDIME
 ShearForces(Imode, Npoin, Idime) = SeismicForce(Imode, Npoin, Idime)
 For Ipoin = Npoin - 1 To 1 Step -1
 ShearForces(Imode, Ipoin, Idime) = ShearForces(Imode, Ipoin + 1, Idime) +
SeismicForce(Imode, Ipoin, Idime)
 Next Ipoin
 Next Idime
 Next Imode

 'complete quadratic combinations C.Q.C. of shear forces (D.M. 14.01.2018)
 For Jmode = 1 To NROOT
 For Imode = 1 To NROOT
 For Ipoin = 1 To Npoin

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 25

 ShearForcesCQC(Ipoin, 1) += Roij(Imode, Jmode) * ShearForces(Imode, Ipoin,
1) * ShearForces(Jmode, Ipoin, 1)
 ShearForcesCQC(Ipoin, 2) += Roij(Imode, Jmode) * ShearForces(Imode, Ipoin,
2) * ShearForces(Jmode, Ipoin, 2)
 Next Ipoin
 Next Imode
 Next Jmode

 For Ipoin = 1 To Npoin
 ShearForcesCQC(Ipoin, 1) = Math.Sqrt(ShearForcesCQC(Ipoin, 1))
 ShearForcesCQC(Ipoin, 2) = Math.Sqrt(ShearForcesCQC(Ipoin, 2))
 Next Ipoin

 'and now, finally, calculate storey forces as differences of storey shears
 For Idime = 1 To NDIME
 SeismicForceCQC(Npoin, Idime) = ShearForcesCQC(Npoin, Idime)
 Next Idime
 For Ipoin = Npoin - 1 To 1 Step -1
 For Idime = 1 To NDIME
 SeismicForceCQC(Ipoin, Idime) = ShearForcesCQC(Ipoin, Idime) -
ShearForcesCQC(Ipoin + 1, Idime)
 Next Idime
 Next Ipoin

 End Sub

6 Calculation Examples

Several examples are presented in this section, comparing MdFem results with the results of Sap4

(in the version of 1994 by Bruce F. Maison, based on the original 1973 Sap4 developed by K. J. Bathe,

E. L. Wilson, F. E. Peterson from the University of California, Berkley) and SismiCad (a widly used

commercial program by Concrete S.r.L. – Padova – Italy).

All the examples refer to the same spectrum, whose data are listed below.

Number of points = 44

Viscous Damping = 0.05

Behaviour Factor = 1.

period ag/g

0.00E+00 1.46E-01
2.42E-01 2.57E-01
3.63E-01 2.57E-01
7.27E-01 2.57E-01
7.87E-01 2.38E-01
8.47E-01 2.21E-01
9.07E-01 2.06E-01
9.67E-01 1.93E-01
1.03E+00 1.82E-01
1.09E+00 1.72E-01
1.15E+00 1.63E-01
1.21E+00 1.55E-01
1.27E+00 1.48E-01
1.33E+00 1.41E-01
1.39E+00 1.35E-01
1.45E+00 1.29E-01
1.51E+00 1.24E-01
1.57E+00 1.19E-01
1.63E+00 1.15E-01
1.69E+00 1.11E-01
1.75E+00 1.07E-01
1.81E+00 1.03E-01

period ag/g

1.87E+00 1.00E-01
1.93E+00 9.70E-02
2.07E+00 8.39E-02
2.22E+00 7.33E-02
2.36E+00 6.46E-02
2.50E+00 5.74E-02
2.65E+00 5.13E-02
2.79E+00 4.62E-02
2.94E+00 4.18E-02
3.08E+00 3.79E-02
3.22E+00 3.46E-02
3.37E+00 3.17E-02
3.51E+00 2.92E-02
3.66E+00 2.69E-02
3.80E+00 2.49E-02
3.94E+00 2.31E-02
4.09E+00 2.15E-02
4.23E+00 2.01E-02
4.38E+00 1.88E-02
4.52E+00 1.76E-02
4.66E+00 1.65E-02
4.81E+00 1.56E-02

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 26

6.1 Example 1 – Antennas Pole 1
The structure is an antennas pole, initially without any load, with the characteristics shown in the

next figure. The cross section of the steel tube is 600 mm in diameter with a thickness of 5 mm. The

restrained degrees of freedom are indicated with the number 1, while the free dof are indicated

with the number 1: there are a total number of 25 dof.

There are symmetries that lead to the same results in couple.

The comparison of the results is shown below.

 Fundamental periods T (s) participating masses
Mode SismiCad MdFem

(lumped)
MdFem

(consistent)
x, y z

1, 2 1.52875
1.5478

1.5118

0.9735
0.9731
0.9433

0
0
0

3, 4 0.2665 0.2689 0.2411
5, 6 0.10204 0.1024 0.0857

The difference between the periods calculated with MdFem and SismiCad is approximately 1%,

while the difference between the periods calculated with the lumped and the consistent mass

matrix increase approximately from 2% (modes 1,2) to 16% (modes 5, 6).

The next figure shows the shear forces calculated with the Response Spectrum Analysis (RSA), by

the MdFem and the SismiCad programs, with the displacements method. The forces at the nodes

are calculated by hand as the differences of the shear forces, with the aim of comparison with those

calculated by MdFem with the forces method. The differences obtained with the two programs are

less then 4%.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 27

MdFem – Forces Method
File Antennas Pole 1
combinations of seismic forces

 Node | C.Q.C. Force |
 | Fx Fy |

 1 0.0000E+00 0.0000E+00
 2 2.7426E-01 2.7426E-01
 3 2.4214E-01 2.4214E-01
 4 2.4962E-01 2.4962E-01
 5 4.5655E-01 4.5655E-01
 6 7.1286E-01 7.1286E-01

base shear 1.9354E+00 1.9354E+00

 In the table on the left are listed the

seismic forces calculated by the MdFem

program with the forces method. In this

case the two methods give the same

results.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 28

In the previous image, the left side shows the resulting shear forces and nodal forces calculated

with the consistent mass matrices and CQC combination, while the right side shows the same values

obtained with the lumped mass and SRSS combination. Both the calculations are made by MdFem.

The shear forces obtained with the consistent mass matrices + CQC are slightly lower then those

calculated with the lumped mass matrices + CQC (2.6% on base shear).

The shear forces obtained with the lumped mass matrices + SRSS greatly overestimate those

obtained with the CQC combination.

Little variations to the described problem are represented in the next figure, where a concentrated

load of 5 kN is inserted on the top of the pole (file Antennas Pole 2), and a linear horizontal load is

applied to element number 6 (file Antennas Pole 2). In the MdFem program, the loads defined in

the load condition number 2 are considered as masses acting in the three dimensions x, y, z.

The results of the first variation are compared with the SismiCad results.

The aim of these new examples is to see how the periods of the natural modes vary with the

increase of the masses.

Antennas Pole 2

 Fundamental periods T (s) participating masses
Mode SismiCad MdFem

(lumped)
MdFem

(consistent)
x, y z

1, 2 2.09763
2.09696

2.06923

0.9783
0.9780
0.9506

0
0
0

3, 4 0.30515 0.30404 0.29140
5, 6 0.10483 .10742 0.09826

The results are very close, and the periods have higher values than those without loads.

Antennas Pole 22

 Fundamental periods T (s) participating masses
Mode MdFem (lumped) MdFem

(consistent)
x, y z

1, 2 2.56844
2.54576

0.9814
0.9594

0
0

3, 4 0.33647 0.32606
5, 6 0.12238 0.11268

The periods continue to increase, and the periods with consistent mass matrices remain lower.

Furthermore, the participant masses with the consistent mass matrices are slightly lower.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 29

6.2 Example 2 – PM3
This example has been already introduced in §3 where a detailed description of the calculation of

the participation factors and of the participating masses is shown.

The structure is a single-span, single-storey concrete frame without any load, with the

characteristics shown in the next figure. The cross section is 0.8 m x 0.4 m. The restrained degrees

of freedom are indicated with the number 1, while the free dof are indicated with the number 0:

there are a total number of 8 dof.

The comparison of the results is shown below.

 Fundamental periods T (s)
Mode SismiCad Sap4 MdFem (lumped) MdFem

(consistent)

1
2
3
4
5
6

0.05755
0.02377
0.01945
0.00543

/
/

0.05002
0.02282
0.02168
0.006087
0.006067

/

0.0587
0.0228
0.0191
0.0061
0.0061
0.0055

0.0542
0.0217
0.0182
0.0146
0.0073
0.0042

 Modal Participation Factors
 Sap4 MdFem Lumped MdFem Consistent

Mode x y Z x y z x y z
1 -2.555 0 0 2.5546 0 0 2.4174 0 0
2 0 -2.555 0 0 2.5546 0 0 2.4283 0
3 0 0 0 0 0 0 0 0 -1.825
4 0 0 -2.555 0 0 2.5546 0 0 0
5 0.0215 0 0 -0.013 0 0 -0.224 0 0
6 / / / 0 0 0 0 0 1.221
7 / / / / / / 0.051 0 0
8 / / / / / / 0 0 0.9437

The calculations with the consistent mass matrices need some more modes, in order to obtain

participating masses greater then 0.90 at least in the x, y directions.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 30

 Modal Participating Masses
 SismiCad MdFem Lumped MdFem Consistent

Mode x y Z x y z x y z
1 1 0 0 0.99999 0 0 0.9035 0 0
2 0 1 0 0 1 0 0 0.9036 0
3 0 0 0 0 0 1 0 0 0.5101
4 0 0 0 0 0 0 0 0 0
5 / / / 0.00003 0 0 0.0077 0 0
6 / / / 0 0 0 0 0 0.2284
7 / / / / / / 0.0004 0 0
8 / / / / / / 0 0 0.1365

Sum 1 1 0 1 1 1 0.9035 0.9035 0.875

For a better reading, numbers lower then 1E-10 are written as zeros. The results are in good

agreement.

The next figures show the results in terms of shear forces Sx, Sy calculated with the RSA and the

displacements method, and the forces at the nodes: in this case of a single storey frame, the forces

at the nodes are equal to the shear forces.

Comparisons of RSA results with displacements method

SismiCad
lumped

Sap4
lumped

MdFem
lumped

MdFem
consistent

CQC CQC SRSS CQC SRSS CQC SRSS
Sx Sy Sx Sy Sx Sy Sx Sy Sx Sy Sx Sy Sx Sy

5.51 5.02 5.41 5.01 5.41 5.01 5.53 5.01 5.53 5.01 5.01 4.51 5.00 4.51

The results obtained with the different programs are very close. The calculations performed with

the consistent mass matrices give lower forces, due to the smaller participating masses.

In this case the shear forces obtained with the SRSS combination are in very good agreement with

the CQC results.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 31

Let now control the results obtained with the forces method: this method is implemented in

MdFem, and the control is made only for the lumped mass matrices calculation.

Also in this case the two methods give the same results. In fact, using two extra decimal digits

 compared to the table, the base forces

MdFem – Forces Method
File Antennas Pole 1
combinations of seismic forces
 Node | C.Q.C. Force |
 | Fx Fy |
 1 0.0000E+00 0.0000E+00
 2 0.0000E+00 0.0000E+00
 3 5.5343E+00 5.0071E+00
 4 5.5343E+00 5.0071E+00
base shear 1.1069E+01 1.0014E+01

 calculated with the displacements

method are:

Sx = 2 x 5.534 = 11.068

Sy = 2 x 5.007 = 10.014

6.3 Example 3 – Participant Masses 1
The structure is a single-span, two-storeys concrete frame, with the characteristics shown in the

next figure. The cross section is 0.8 m x 0.4 m. The horizontal beams have a vertical load of 15 kN/m.

The nodes at the base are completely restrained, while the others are completely free: there are a

total number of 24 dof.

The comparison of the results is shown below.

 Fundamental periods T (s)
Mode SismiCad Sap4 MdFem (lumped) MdFem

(consistent)

1
2
3
4
5
6

0.20048
0.19895
0.16792
0.04979
0.03258
0.03255

0.2012
0.1737
0.1311
0.0523
0.03223
0.02993

0.20122
0.17378
0.13118
0.05231
0.03223
0.02993

0.1975
0.1721
0.1160
0.0498
0.0318
0.0260

7 0.01455 0.01486 0.01486 0.0209
8 / / / 0.0160

The results of MdFem and Sap4 are identical, and those of SismiCad are very close.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 32

 Modal Participation Factors
 Sap4 MdFem Lumped MdFem Consistent

Mode x y Z x y z x y z
1 0 -4.896 0 0 4.896 0 0 4.890 0
2 5.196 0 0 -5.196 0 0 5.169 0 0
3 0 0 0 0 0 0 0 0 0
4 1.948 0 0 1.948 0 0 1.842 0 0
5 0 2.611 0 0 2.611 0 0 2.472 0
6 0 0 0 0 0 0 0 0 0
7 0 0 -5.413 0 0 5.413 0 0 2.003
8 / / / / / / 0 0 -4.434

For the calculations with the consistent mass matrices, one more mode have been calculated, in

order to obtain some more participating masses in the z direction.

The results of MdFem and Sap4 are identical.

 Modal Participating Masses
 SismiCad MdFem Lumped MdFem Consistent

Mode x y Z x y Z x y z
1 0 0.7870 0 0 0.7786 0 0 0.7765 0
2 0 0 0 0.8767 0 0 0.8677 0 0
3 0.8852 0 0 0 0 0 0 0 0
4 0.1148 0 0 0.1233 0 0 0.1102 0 0
5 0 0.2130 0 0 0.2214 0 0 0.1984 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0.9544 0 0 0.9514 0 0 0.1303
8 / / / / / / 0 0 0.6471

Sum 0.9999 1 0.9544 0.9999 1 0.9514 0.978 0.975 0.777

For a better reading, numbers lower then 1E-10 are written as zeros.

The results are in good agreement: again, with the consistent mass matrices the participating

masses are lower.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 33

The next figures show the results in terms of shear forces Sx, Sy calculated with the RSA and the

displacements method, and the forces at the nodes calculated by hand as differences of the shear

forces.

Comparisons of RSA results with displacements method

 SismiCad
lumped

Sap4
lumped

MdFem
lumped

MdFem
consistent

 CQC CQC SRSS CQC SRSS CQC SRSS
Elem. Sx Sy Sx Sy Sx Sy Sx Sy Sx Sy Sx Sy Sx Sy
1, 2 30.0 28.8 30.0 28.5 30.0 28.5 30.0 28.5 30.0 28.5 29.6 28.2 29.6 28.1
3, 4 19.3 20.5 19.5 20.5 19.5 20.5 19.5 20.5 19.5 20.5 19.6 19.9 19.0 19.9

The results obtained with the different programs are very close, or identical. With the consistent

mass matrices the forces are slightly lower, due to the smaller participating masses.

In this case, again, the shear forces obtained with the SRSS combination are in very good agreement

with the CQC results: with the lumped mass matrices the results are the same, while with the

consistent mass matrices SRSS values are slightly lower.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 34

Let now control the results obtained with the forces method: this method is implemented in

MdFem, and the control is made only for the lumped mass matrices calculation.

MdFem – Forces Method
File Participant Masses 1L CQC
combinations of seismic forces

 Node | C.Q.C. Force |
 | Fx Fy |

 1 0.0000E+00 0.0000E+00
 2 0.0000E+00 0.0000E+00
 3 1.0907E+01 8.6260E+00
 4 1.0188E+01 7.4505E+00
 5 1.9517E+01 2.0496E+01
 6 1.9517E+01 2.0496E+01

base shear 6.0129E+01 5.7069E+01

 MdFem – Displacements Method
Hand calculated forces
From MdFem lumped CQC

 Node Fx Fy

 1 0.00 0.00
 2 0.00 0.00
 3 10.54 8.04
 4 10.54 8.04
 5 19.52 20.50
 6 19.52 20.50

Also in this case, the base shears Sx, Sy, calculated with the forces method, are the same of those

calculated with the displacements method: in fact, using an extra decimal digit compared to the

table, the base forces calculated with the displacements method are:

Sx = 30.06 x 2 = 60.12

Sy = 28.53 x 2 = 57.06

the two methods give the same results.

The 1st storey forces instead, with the forces method become asymmetric, though their average

values are very close to the correct values:

Sx: (10.907 + 10.188) / 2 = 10.55

Sy: (8.626 + 7.4505) / 2 = 8.04

As told in 5.4, the implemented method gives good results in some cases, but needs more insights.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 35

6.4 Example 4 – PM_M1
The structure is a two-spans, two-storeys concrete frame, with the characteristics shown in the next

figure. The cross section is 0.8 m x 0.4 m and is oriented in different ways as shown in the figure.

The horizontal longest beams (with green colour) have a vertical load of 15 kN/m. The nodes at the

base are completely restrained, while the others are completely free.

The comparison of the results is shown below.

 Fundamental periods T (s)
Mode SismiCad MdFem (lumped) MdFem (consistent)

1
2
3
4
5
6

0.20865
0.17227
0.11612
0.08944
0.05839
0.05660

0.21984
0.17067
0.11991
0.09030
0.06502
0.06150

0.21863
0.15699
0.11929
0.08535
0.06340
0.05551

7 0.03187 0.03353 0.03298
8 0.03125 0.03204 0.03014
9 0.01794 0.01874 0.02948
10 0.01781 0.01862 0.02516
11 0.01772 0.01853 0.02197
12 0.01760 0.01841 0.01959

The results of MdFem and SismiCad are close.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 36

 Modal Participating Masses
 SismiCad MdFem Lumped MdFem Consistent

Mode x y Z x y Z x y z
1 0.8880 0 0 0.8772 0 0 0.8714 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0.8800 0 0 0.8640 0 0 0.8580 0
4 0 0 0 0 0 0 0 0 0
5 0.1119 0 0 0.1228 0 0 0.1144 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0.1200 0 0 0.1360 0 0 0.1263 0
8 0 0 0 0 0 0 0 0 0
9 0 0 0.9560 0 0 0.9497 0 0 0
10 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0.4863
12 0 0 0 0 0 00 0 0
Sum 0.9999 0.9999 0.9559 0.9999 0.9999 0.9497 0.9859 0.9844 0.4864

For a better reading, numbers lower then 1E-10 are written as zeros. The results are in good

agreement.

The next figure shows the results in terms of shear forces Sx, Sy calculated with the RSA and the

displacements method.

Comparisons of RSA results with displacements method

Shear
forces

SismiCad
lumped

MdFem
lumped

MdFem
consistent

CQC CQC SRSS CQC SRSS
Sx1 51.10 51.60 51.57 51.12 51.09
Sx2 33.42 34.21 34.23 33.69 33.71
Sy1 41.82 41.51 41.49 41.12 41.10
Sy2 27.65 27.96 27.98 27.55 27.57

The results obtained with the different programs are very close, with minimal differences.

In this example also with the consistent mass matrices the forces are practically the same.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 37

Let now control the results obtained with the forces method, comparing again the calculations

made with the lumped mass matrices and CQC combination (and MdFem program).

MdFem – Forces Method
File Participant Masses 1L CQC
combinations of seismic forces

 Node | C.Q.C. Force |
 | Fx Fy |

 1 0.0000E+00 0.0000E+00
 2 0.0000E+00 0.0000E+00
 3 1.8117E+01 1.4388E+01
 4 1.7731E+01 1.3940E+01
 5 3.3804E+01 2.7500E+01
 6 3.3539E+01 2.7192E+01
 7 0.0000E+00 0.0000E+00
 8 0.0000E+00 0.0000E+00
 9 1.7924E+01 1.4164E+01
 10 1.6853E+01 1.2933E+01
 11 3.4207E+01 2.7961E+01
 12 3.4207E+01 2.7961E+01

base shear 2.0638E+02 1.6604E+02

 MdFem – Displacements Method
Hand calculated forces
From MdFem lumped CQC

 Node Fx Fy

 1 0.00 0.00
 2 0.00 0.00
 3 17.39 13.55
 4 17.39 13.55
 5 34.21 27.96
 6 34.21 27.96
 7 0.00 0.00
 8 0.00 0.00
 9 17.39 13.55
 10 17.39 13.55
 11 34.21 27.96
 12 34.21 27.96

In this case again, the base shears Sx, Sy, calculated with the forces method, are the same of those

calculated with the displacements method whose values are:

Sx = 51.60 x 4 = 206.4

Sy = 41.51 x 4 = 166.04

Also in this case the forces method leads to asymmetries, though their average values are close to

the correct values:

Sx: nodes 3, 4, 9, 10: (18.117 + 17.731 + 17.924 + 16.853) / 4 = 17.656

Sx: nodes 5, 6, 11, 12: (33.804 + 33.539 + 34.207 x 2) / 4 = 33.939

Sy: nodes 3, 4, 9, 10: (14.388 + 13.940 + 14.164 + 12.933) / 4 = 13.856

Sy: nodes 5, 6, 11, 12: (27.50 + 27.192 + 27.961 x 2) / 4 = 27.654

As told in 5.4, the implemented method gives good results in some cases, but needs more insights.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 38

7 Final Remarks

The work presented in this article does not contain anything new from the theoretical point of view,

but may be useful for didactical purposes, or even for real applications and research.

The comparisons made with different programs in the various examples, allows me to make some

considerations.

The eigenvalues, the eigenvectors and the participating masses have always been calculated with

minimal or no differences.

In the Response Spectrum Analysis, the displacements method, with the CQC combination, seems

to be the best choice: the results obtained with the different programs are in fact very close and

satisfactory. In spite of that, even with this procedure asymmetries may sometimes arise: such type

of examples have not been published in this work, but maybe they will be in the future.

The displacements method, with the SRSS combination, gives good results in some cases, but with

more exceptions. In the examples here presented it fails, for instance, in the Antennas Pole 1 case.

Actually, it is widely known that it can lead to wrong values, either underestimating or

overestimating the correct values [10].

The forces method gives good results in the first two examples, but in the other two some

asymmetries arise. Though the presented results are not bad, the implementation described in this

article is not as general as needed. As already told, the method needs some insights in order to

obtain a procedure of general validity from a mathematical point of view.

One final consideration concerns the use of consistent mass matrices. Though they require an extra

computational effort, it is a problem that concerns the computer's CPU and we can ignore it. But

they also require the calculation of more natural frequencies to obtain an adequate participating

mass, without appreciable improvements in the quality of the results.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 39

8 Bibliography

[1] Bathe K. J.: “Finite Element Procedures in Engineering Analysis”. Prentice Hall, 1982.

[2] Boreggio G., Benà S.: “Programma di calcolo SSPACE – Analisi modale di sistemi ad elevato

numero di gradi di libertà”. Lecture notes from University of Padua, 1985.

[3] Bish P., Carvalho E. et alii: “Eurocode 8: Seismic Design of Buildings - Worked examples”.

Workshop “EC8: Seismic Design of Buildings”, Lisbon, 2011.

[4] De Pisapia M.: “Earthquake – La guida pratica per l’analisi sismica delle strutture”. Private

Practice, 2017.

[5] D.M. 17.01.2018: “Aggiornamento delle <<Norme tecniche per le costruzioni>>”. Supplemento

ordinario n° 8 alla GAZZETTA UFFICIALE – Serie generale n° 42.

[6] Katsikadelis J. T.: “Dynamic Analysis of Structures”. Academic Press, Elsevier, 2020.

[7] Eurocode 8 (EN 1998): “Design of structures for earthquake resistance”.

[8] Serafini P.: “Semplice esempio numerico del metodo di analisi dinamica”. Appunti in rete, 2009.

[9] Varagnolo P.: “3-D Beam Finite Element Programming - A Practical Guide: Part 1 – Static

Analysis”. ResearchGate, 2021.

[10] Wilson E. L., Der Kiureghian A., Bayo P.: “A replacement for the SRSS method in seismic

analysis”. Earthquake Engineering and Structural Dynamics, vol. 9. John Wiley & Sons, 1981.

[11] Zienkiewicz O. C.: “The Finite Element Method”. Third Edition. Mc Graw Hill, 1977.

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 40

9 Appendix A – Program Sspace

IN NO EVENT SHALL PAOLO VARAGNOLO BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE
OF THIS SOFTWARE AND ITS DOCUMENTATION. PAOLO VARAGNOLO SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE AND ACCOMPANYING
DOCUMENTATION PROVIDED HERE, IS PROVIDED "AS IS". PAOLO VARAGNOLO HAS NO OBLIGATION
TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

The program execution begins with the subroutine MainSub(), which reads the problem data from

a file named InFile, initializes some variables and then calls the subroutine Sspace() where the

eigenproblem is solved.

The variables are described and explained inside the subroutine Sspace(). For some variables it

may be useful to refer to [9].

The order and the type of the data is clear from the context, given the meaning of the variables.

Sub MainSub()

 Dim Dummy, Title As String
 Dim File1 As System.IO.StreamWriter = Nothing

 Dim NumFile As Integer = FreeFile()
 FileOpen(NumFile, InFile, OpenMode.Input)

 File1 = My.Computer.FileSystem.OpenTextFileWriter(OuFile, True)

 Title = LineInput(NumFile)
 File1.WriteLine(Title + vbCrLf)

 Dummy = LineInput(NumFile)
 NDOFT = Val(LineInput(NumFile))

 Dummy = LineInput(NumFile)
 NKGLO = Val(LineInput(NumFile))

 Dummy = LineInput(NumFile)
 NMGLO = Val(LineInput(NumFile))

 Dummy = LineInput(NumFile)
 NROOT = Val(LineInput(NumFile))

 ReDim GLOBK(NKGLO), GLOBM(NMGLO), MAXAD(NDOFT + 1)

 Dummy = LineInput(NumFile)
 For Idofn = 1 To NDOFT + 1
 MAXAD(Idofn) = Val(LineInput(NumFile))
 Next Idofn

 Dummy = LineInput(NumFile)
 For i% = 1 To NKGLO
 GLOBK(i%) = Val(LineInput(NumFile))
 Next i%

 Dummy = LineInput(NumFile)
 For i% = 1 To NMGLO
 GLOBM(i%) = Val(LineInput(NumFile))
 Next i%

 NITEM = 16
 IFSS = 1
 IFPR = 0 '1 'flag for complete output (1) or compacted output (0)
 RTOL = 0.000001

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 41

 Call Sspace(File1)

 FileClose()
 File1.Close()

End Sub

9.1 Global scope variables
The next table shows the list of global scope variables. Any change of type from single to double or

vice versa involves different approximations in the calculations and consequently gives little

changes in the results.

 Public Errore As Boolean
 Public InFile, OuFile, PrtString, myPath As String
 Public NDOFT, NKGLO, NMGLO, MAXAD() As Integer
 Public GLOBK(), GLOBM() As Double

 Public MassC(21), RTOL, Gaccel As Double
 Public CircFreq(), Frequency(), Period() As Single
 Public NROOT, NITEM, IFSS, IFPR As Integer
 Public Eigenvalues, IfLumped As Boolean
 Public ModFile As String

9.2 Other Subroutines
The first subroutine in this paragraph is the Sspace() program core, which manages the

eigenproblem solution with the calls to the subroutines. The other subroutines follow, in no

particular order. The subroutines possibly presented within the text are part of the program and

will not be re-presented below.

Sub Sspace(File1 As StreamWriter)
 '---
 ' Program to solve for the smallest eigenvalues and corresponding eigenvectors
 ' in the generalized eigenproblem using the subspace iteration method
 '
 ' written by K. J. Bathe: "Finite Element Procedures in Engineering Analysis"
 ' Prentice-Hall, 1982
 '
 ' revised and translated in vb.net by Paolo Varagnolo, 2020
 '
 ' Input variables
 '---
 ' GLOBK(NKGLO) = stiffness matrix in compacted form
 ' (global scope variable, already assembled)
 ' GLOBM(NMGLO) = mass matrix in compacted form
 ' (global scope variable, already assembled)
 ' MAXAD(NDOFT + 1) = vector containing the addresses of diagonal elements of GLOBK()
 ' (global scope variable, already assembled)
 ' R(NDOFT, NC) = eigenvectors on solution exit
 ' EIGV(NC) = eigenvalues on solution exit
 ' TT(NDOFT) = working vector
 ' W(NDOFT) = working vector
 ' AR(NNC) = working vector storing projection of GLOBK
 ' BR(NNC) = working vector storing projection of GLOBM
 ' VEC(NC, NC) = working matrix
 ' D(NC) = working vector
 ' RTOLV(NC) = working vector
 ' BUP(NC) = working vector
 ' BLO(NC) = working vector

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 42

 ' BUPC(NC) = working vector
 '
 ' NKGLO = number of elements below skyline of GLOBK()
 ' (global scope variable, already assigned)
 ' NMGLO = number of elements below skyline of GLOBM()
 ' (global scope variable, already assigned)
 ' NDOFT = total number of degrees of freedom = order of GLOBK(), GLOBM()
 ' (global scope variable, already assigned)
 ' NC = number of iteration vectors used, usually set to MIN(2*NROOT,
NROOT+8),
 ' cannot be larger then the number of mass degrees of freedom
 ' NNC = NC * (NC + 1) / 2 dimension of storage vectors AR, BR
 ' NROOT = number of required eigenvalues and eigenvectors
 ' (global scope variable, already assigned)
 ' RTOL = convergence tolerance on eigenvalues (1E-6 or smaller)
 ' (global scope variable, already assigned)
 ' NITEM = maximum number of subspace iterations permitted (usually set to 16)
 ' the parameters NC and/or NITEM must be increased
 ' if a Then solutions has Not converged
 ' (global scope variable, already assigned)
 ' NSMAX = maximum number of sweeps in Jacobi iteration
 ' IFSS = flag for Sturm sequence check: = 0 --> no check; = 1 --> check
 ' (global scope variable, already assigned)
 ' IFPR = flag for intermediate printing: = 0 --> no check; = 1 --> check
 ' (global scope variable, already assigned)
 ' Dstif = scratch streamwriter to store stiffness matrix
 ' File1 = streamwriter for output file
 '---
 ' Output variables
 '---
 ' EIGV(NROOT) = eigenvalues
 ' R(NDOFT, NROOT) = eigenvectors
 '---
 Dim NC, MassDOF, NNC, ij, Iconv, NSCH, NSMAX, N1, NC1, ND, ISH, Nite, Nei, Idofn
As Integer
 Dim itemp As Integer
 Dim i%, j%, l%, ii%
 Dim TOLJ, RT, MaxTol, ART, BRT, Dummy, Vnorm, Wnorm, Shift As Double
 Dim Text As String
 Dim ConvReached, Swapped As Boolean

 MassDOF = CalculateMassDOF()
 NC = Math.Min(2 * NROOT, NROOT + 8)
 NC = Math.Min(NC, MassDOF)
 NNC = NC * (NC + 1) / 2

 Dim R(NDOFT, NC), TT(NDOFT), W(NDOFT), EIGV(NC), D(NC), VEC(NC, NC), AR(NNC),
BR(NNC) As Double
 Dim RTOLV(NC), BUP(NC), BLO(NC), BUPC(NC) As Double

 TOLJ = 0.000000000001 'TOLERANCE FOR jACOBI ITERATION

 If NROOT > NDOFT Then
 Text = "The number of requested eigenvalues is greater then " + vbCrLf
 Text += "the number of degrees of freedom in the model." + vbCrLf
 Text += "Only " + NDOFT.ToString + " eigenvalues will be serched." + vbCrLf
 MsgBox(Text, vbExclamation, "Warning")
 File1.WriteLine(Text)
 NROOT = NDOFT
 End If

 If NROOT > MassDOF Then
 Text = "The number of requested eigenvalues is greater then " + vbCrLf
 Text += "the number of mass degrees of freedom." + vbCrLf
 Text += "Only " + MassDOF.ToString + " eigenvalues will be serched." + vbCrLf
 MsgBox(Text, vbExclamation, "Warning")
 File1.WriteLine(Text)
 NROOT = MassDOF
 End If

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 43

 If IFPR <> 0 Then
 Text = vbCrLf
 Text += "global stiffness matrix in compacted form " + vbCrLf
 For i% = 1 To NKGLO
 Text += String.Format("{0,15}", GLOBK(i%).ToString("0.00000000E+00")) +
vbCrLf
 Next i%
 File1.WriteLine(Text)

 Text = vbCrLf
 Text += "global mass matrix in compacted form " + vbCrLf
 For i% = 1 To NMGLO
 Text += String.Format("{0,15}", GLOBM(i%).ToString("0.00000000E+00")) +
vbCrLf
 Next i%
 File1.WriteLine(Text)
 End If

 'Initialization
 Iconv = 0
 NSCH = 0
 NSMAX = 12
 N1 = NC + 1
 NC1 = NC - 1

 Dim Dstif As System.IO.StreamWriter = Nothing
 Dim FileWork0 As String = myPath + "WORK0" 'open a file where will be saved the
stiffness global matrix
 If Dir(FileWork0) <> "" Then Kill(FileWork0)

 Dstif = My.Computer.FileSystem.OpenTextFileWriter(FileWork0, True)

 'write global stiffness matrix
 For i% = 1 To NKGLO
 Dstif.WriteLine(GLOBK(i%))
 Next i%
 Dstif.Close()

 ReDim D(NC), R(NDOFT, NC) 'this set the arrays to zero

 'establish starting iteration vectors
 ND = Int(NDOFT / NC)
 If NMGLO <= NDOFT Then
 j% = 0
 For i% = 1 To NDOFT
 ii% = MAXAD(i%)
 R(i%, 1) = GLOBM(i%)
 If GLOBM(i%) > 0 Then j% += 1
 W(i%) = GLOBM(i%) / GLOBK(ii%)
 Next i%
 If NC > j% Then
 Text = "The number of iteration vectors must not exceed the number of mass
degrees of freedom." + vbCrLf
 MsgBox(Text, vbExclamation, "Warning")
 File1.WriteLine(Text)
 End
 End If
 Else
 For i% = 1 To NDOFT
 ii% = MAXAD(i%)
 R(i%, 1) = GLOBM(ii%)
 W(i%) = GLOBM(ii) / GLOBK(ii)
 Next i%
 End If

 l% = NDOFT - ND
 For j% = 2 To NC
 RT = 0

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 44

 For i% = 1 To l%
 If W(i%) >= RT Then
 RT = W(i%)
 ij = i%
 End If
 Next i%
 For i% = l% To NDOFT
 If W(i%) > RT Then
 RT = W(i%)
 ij = i%
 End If
 Next i%
 TT(j%) = ij
 W(ij) = 0.0
 l% -= ND
 R(ij, j%) = 1.0
 Next j%

 PrtString = "Degrees of freedom excited by unit starting iteration vectors" +
vbCrLf
 Call PrintArray_1_10_Int(PrtString, TT, 2, NC)
 File1.WriteLine(PrtString)

 'factorize matrix GLOBK() into (L)*(D)*(L(T))
 ISH = 0
 Call Decomp(ISH, File1)
 If Errore Then
 File1.Close() : Exit Sub
 End If

 'start of iteration loop
 Nite = 0
 ConvReached = False
 Do While Iconv = 0 'it is an infinite loop, Iconv remains = 0. The exit from the
loop occurs when ConvReached becomes true
 Nite += 1
 If IFPR <> 0 Then
 Text = vbCrLf
 Text += "Iteration number: " + String.Format("{0,4}",
Nite.ToString("###0")) + vbCrLf
 File1.WriteLine(Text)
 End If

 'calculate the projection of GLOBK and GLOBM
 ij = 0
 For j% = 1 To NC
 For k% = 1 To NDOFT
 TT(k%) = R(k%, j%)
 Next k%
 Call REDBAK(TT, File1)
 For i% = j% To NC
 ART = 0
 For k% = 1 To NDOFT
 ART += R(k%, i%) * TT(k%)
 Next k%
 ij += 1
 AR(ij) = ART
 Next i%
 For k% = 1 To NDOFT
 R(k%, j%) = TT(k%)
 Next k%
 Next j%

 If IFPR <> 0 Then
 PrtString = vbCrLf
 PrtString += "array TT() after REDBAK" + vbCrLf
 Call PrintArray_1_10_Real(PrtString, TT, 1, NDOFT)
 File1.WriteLine(PrtString)
 End If

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 45

 ij = 0
 For j% = 1 To NC
 Call MULT(TT, GLOBM, R, j%, NMGLO)
 For i% = j% To NC
 BRT = 0
 For k% = 1 To NDOFT
 BRT += R(k%, i%) * TT(k%)
 Next k%
 ij += 1
 BR(ij) = BRT
 Next i%
 If Not ConvReached Then
 For k% = 1 To NDOFT
 R(k%, j%) = TT(k%)
 Next k%
 End If
 Next j%

 'solve for eigensystem of subspace operators
 If IFPR <> 0 Then
 Call PrintProjections(AR, BR, NC, File1)
 End If

 Call Jacobi(AR, BR, VEC, EIGV, W, NC, NNC, TOLJ, NSMAX, IFPR, File1)
 If Errore Then
 FileClose() : Exit Sub
 End If

 If IFPR <> 0 Then
 Text = "AR and BR after Jacobi diagonalization"
 File1.WriteLine(Text)
 Call PrintProjections(AR, BR, NC, File1)
 End If

 'arrange eigenvalues in ascending order
 Swapped = True
 Do Until Swapped = False
 Swapped = False
 ii = 1
 For i% = 1 To NC1
 itemp = ii + N1 - i%
 If EIGV(i% + 1) < EIGV(i%) Then
 Swapped = True
 Dummy = EIGV(i% + 1)
 EIGV(i% + 1) = EIGV(i%)
 EIGV(i%) = Dummy
 Dummy = BR(itemp)
 BR(itemp) = BR(ii)
 BR(ii) = Dummy
 For k% = 1 To NC
 Dummy = VEC(k%, i% + 1)
 VEC(k%, i% + 1) = VEC(k%, i%)
 VEC(k%, i%) = Dummy
 Next k%
 End If
 ii = itemp
 Next i%
 Loop

 If IFPR <> 0 Then
 Text = "Eigenvalues of AR - Lambda * BR" + vbCrLf
 Call PrintArray_1_10_Real(Text, EIGV, 1, NC)
 File1.WriteLine(Text)
 End If

 'calculate GLOBM times approximate or final eigenvectors
 For i% = 1 To NDOFT
 For j% = 1 To NC

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 46

 TT(j%) = R(i%, j%)
 Next j%
 For k% = 1 To NC
 RT = 0
 For l% = 1 To NC
 RT += TT(l%) * VEC(l%, k%)
 Next l%
 R(i%, k%) = RT
 Next k%
 Next i%

 '---

 'this is the real exit from the iteration loop
 If ConvReached Then Exit Do
 '---

 'check for convergence of eigenvalues
 For i% = 1 To NC
 RTOLV(i%) = Math.Abs(EIGV(i%) - D(i%)) / EIGV(i%)
 Next i%
 If IFPR <> 0 Then
 Text = vbCrLf
 Text += "Relative tolerance reached on eigenvalues." + vbCrLf
 Call PrintArray_1_10_Real(Text, RTOLV, 1, NC)
 File1.WriteLine(Text)
 End If

 MaxTol = -9999
 For i% = 1 To NROOT
 If MaxTol < RTOLV(i%) Then MaxTol = RTOLV(i%)
 Next i%
 If MaxTol < RTOL Then
 'convergence reached
 Text = vbCrLf
 Text += "Convergence reached for tolerance = " + String.Format("{0,12}",
RTOL.ToString("0.00000E+00")) '+ vbCrLf
 File1.WriteLine(Text)
 ConvReached = True 'Iconv = 1
 Else
 If Nite >= NITEM Then
 'convergence not reached
 Text = vbCrLf
 Text += "No convergence in maximum number of iteratioons permitted." +
vbCrLf
 Text += "Current iteration values will be accepted." + vbCrLf
 Text += "The Sturm sequence check is not performed." + vbCrLf
 File1.WriteLine(Text)
 ConvReached = True 'Iconv = 2
 IFSS = 0
 Else
 For i% = 1 To NC
 D(i%) = EIGV(i%)
 Next i%
 End If
 End If
 Loop 'end of iteration loop

 Text = vbCrLf
 Text += "The calculated eigenvalues are:" + vbCrLf
 Call PrintArray_1_10_Real(Text, EIGV, 1, NROOT)
 File1.WriteLine(Text)

 Text = ""
 Text += "The calculated eigenvectors are:" + vbCrLf
 For Iroot = 1 To NROOT
 Dim Dumm(NDOFT) As Double
 For Idofn = 1 To NDOFT

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 47

 Dumm(Idofn) = R(Idofn, Iroot)
 Next Idofn
 Call PrintArray_1_10_Real(Text, Dumm, 1, NDOFT)
 Next Iroot
 File1.WriteLine(Text)

 'calculate and print error norms

 'read global stiffness matrix
 Using sr As StreamReader = File.OpenText(FileWork0) 'stiffness global matrix
 For i% = 1 To NKGLO
 GLOBK(i%) = sr.ReadLine
 Next i%
 End Using

 For l% = 1 To NROOT
 RT = EIGV(l%)
 Call MULT(TT, GLOBK, R, l%, NKGLO)
 Vnorm = 0
 For i% = 1 To NDOFT
 Vnorm += TT(i%) * TT(i%)
 Next i%
 Call MULT(W, GLOBM, R, l%, NMGLO)
 Wnorm = 0
 For i% = 1 To NDOFT
 TT(i%) -= RT * W(i%)
 Wnorm += TT(i%) * TT(i%)
 Next i%
 Vnorm = Math.Sqrt(Vnorm)
 Wnorm = Math.Sqrt(Wnorm)
 D(l%) = Wnorm / Vnorm
 Next l%

 If IFPR > 0 Then
 Text = vbCrLf
 Text += "Print error norms on the eigenvalues" + vbCrLf
 Call PrintArray_1_10_Real(Text, D, 1, NROOT)
 File1.WriteLine(Text)
 End If

 'apply Sturm sequence check
 If IFSS <> 0 Then 'IFSS is the flag for Sturm sequence check
 Call SturmCheck(EIGV, RTOLV, BUP, BLO, BUPC, D, NC, Nei, RTOL, Shift, File1)
 If Errore Then
 File1.Close() : Exit Sub
 End If
 If IFPR > 0 Then
 Text = vbCrLf
 Text += "Check applied at shift: " + String.Format("{0,12}",
Shift.ToString("0.00000E+00")) '+ vbCrLf
 File1.WriteLine(Text)
 End If

 'shift matrix GLOBK
 'read global stiffness matrix
 Using sr As StreamReader = File.OpenText(FileWork0) 'stiffness global matrix
file
 For i% = 1 To NKGLO
 GLOBK(i%) = sr.ReadLine
 Next i%
 End Using

 If NMGLO <= NDOFT Then
 For i% = 1 To NDOFT
 ii = MAXAD(i%)
 GLOBK(ii) -= GLOBM(i%) * Shift
 Next i%
 Else
 For i% = 1 To NKGLO

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 48

 GLOBK(i%) -= GLOBM(i%) * Shift
 Next i%
 End If

 'factorize shifted matrix
 ISH = 1
 Call Decomp(ISH, File1)
 If Errore Then
 File1.Close() : Exit Sub
 End If

 'count number of negative diagonal elements
 NSCH = 0
 For i% = 1 To NDOFT
 ii = MAXAD(i%)
 If GLOBK(ii) < 0 Then NSCH += 1
 Next i%

 If NSCH = Nei Then
 Text = ""
 Text += "We found the lowest: " + String.Format("{0,4}",
NSCH.ToString("###0")) + " eigenvalues "
 Text += "(" + NROOT.ToString + " had to be found)" + vbCrLf
 File1.WriteLine(Text)
 Else
 Text = ""
 Text += "There are: " + String.Format("{0,4}", (NSCH -
Nei).ToString("###0")) + " eigenvalues missing" + vbCrLf
 File1.WriteLine(Text)
 End If
 End If 'Sturm sequence check

 'Write FREQUENCIES (ADDED BY PV)
 If IFSS = 0 Then
 Text = vbCrLf + " PRINT OF FREQUENCIES" + vbCrLf
 Else
 Text = " PRINT OF FREQUENCIES" + vbCrLf
 End If
 Text += vbCrLf
 Text += " MODE CIRCULAR " + vbCrLf
 Text += " NUMBER FREQUENCY FREQUENCY PERIOD" + vbCrLf
 Text += " (RAD/SEC) (CYCLES/SEC) (SEC)" + vbCrLf
 Text += "---"
 File1.WriteLine(Text)

 ReDim CircFreq(NROOT), Frequency(NROOT), Period(NROOT)
 Dim TPI As Double = 8 * Math.Atan(1)
 For i% = 1 To NROOT
 CircFreq(i%) = Math.Sqrt(EIGV(i%)) 'circular frequency
 Frequency(i%) = CircFreq(i%) / TPI 'frequency
 Period(i%) = TPI / CircFreq(i%) 'period
 Text = String.Format("{0,5}", i%.ToString("####0")) + " "
 Text += String.Format("{0,17}", CircFreq(i%).ToString("E8"))
 Text += String.Format("{0,17}", Frequency(i%).ToString("E8"))
 Text += String.Format("{0,17}", Period(i%).ToString("E8"))
 File1.WriteLine(Text)
 Next i%

 Sub Decomp(ISH As Integer, File1 As StreamWriter)

 'subroutine to factorize stiffness matrix GLOBK() into (L)*(D)*(L(T))

 'In the original subroutine GLOBK, MAXAD, NDOFT are formal arguments, but here
these variables have a global scope

 Dim KN, KL, KU, KH, IC, KLT, KI, ND, KK As Integer
 Dim k%

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 49

 Dim Var1, Var2 As Double
 Dim Text As String

 If NDOFT = 1 Then Return

 For n% = 1 To NDOFT
 KN = MAXAD(n%)
 KL = KN + 1
 KU = MAXAD(n% + 1) - 1
 KH = KU - KL
 If KH > 0 Then
 k% = n% - KH
 IC = 0
 KLT = KU
 For j% = 1 To KH
 IC += 1
 KLT -= 1
 KI = MAXAD(k%)
 ND = MAXAD(k% + 1) - KI - 1
 If ND > 0 Then
 KK = Math.Min(IC, ND)
 Var1 = 0
 For l% = 1 To KK
 Var1 += GLOBK(KI + l%) * GLOBK(KLT + l%)
 Next l%
 GLOBK(KLT) -= Var1
 End If
 k% += 1
 Next j%
 End If
 If KH >= 0 Then
 k% = n%
 Var2 = 0
 For KK = KL To KU
 k% -= 1
 KI = MAXAD(k%)
 Var1 = GLOBK(KK) / GLOBK(KI)
 If Math.Abs(Var1) > 10000000.0 Then
 Text = vbCrLf
 Text += "Stop - Sturm sequence check failed because of multiplier
growth" + vbCrLf
 Text += "for column number " + n%.ToString + ". Multiplier = " +
String.Format("{0,12}", Var1.ToString("0.00000E+00"))
 MsgBox(Text, vbExclamation, "Warning")
 File1.WriteLine(Text)
 Errore = True : Exit Sub
 End If
 Var2 += Var1 * GLOBK(KK)
 GLOBK(KK) = Var1
 Next KK
 GLOBK(KN) -= Var2
 End If

 If GLOBK(KN) <= 0 Then
 If ISH = 0 Then
 Text = vbCrLf
 Text += "Stop - Stiffness matrix not positive definite." + vbCrLf
 Text += "non positive pivot for equation " + n%.ToString + ". Pivot =
" + String.Format("{0,12}", GLOBK(KN).ToString("0.00000E+00"))
 MsgBox(Text, vbExclamation, "Warning")
 File1.WriteLine(Text)
 Errore = True : Exit Sub
 Else
 If GLOBK(KN) = 0 Then GLOBK(KN) = -0.0000000000000001
 End If
 End If
 Next n%

 End Sub

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 50

 Sub REDBAK(ByRef Vett() As Double, File1 As StreamWriter)

 'subroutine to reduce and back-substitute iteration vectors

 'In the original subroutine GLOBK, MAXAD, NDOFT are formal arguments, but here
these variables have a global scope

 Dim KL, KU As Integer
 Dim k%, n%
 Dim Var1 As Double

 For n% = 1 To NDOFT
 KL = MAXAD(n%) + 1
 KU = MAXAD(n% + 1) - 1
 If (KU - KL) >= 0 Then
 k% = n%
 Var1 = 0
 For kk = KL To KU
 k% -= 1
 Var1 += GLOBK(kk) * Vett(k%)
 Next kk
 Vett(n%) -= Var1
 End If
 Next n%

 For n% = 1 To NDOFT
 k% = MAXAD(n%)
 Vett(n%) = Vett(n%) / GLOBK(k%)
 Next n%

 If NDOFT = 1 Then Return

 n% = NDOFT
 For l% = 2 To NDOFT
 KL = MAXAD(n%) + 1
 KU = MAXAD(n% + 1) - 1
 If (KU - KL) >= 0 Then
 k% = n%
 For kk = KL To KU
 k% -= 1
 Vett(k%) -= GLOBK(kk) * Vett(n%)
 Next kk
 End If
 n% -= 1
 Next l%

 End Sub

 Sub MULT(ByRef TT() As Double, Vett() As Double, RR(,) As Double, Icolu As Integer,
MaxInd As Integer)

 'subroutine to evaluate product of Vett() times the Icolu-th column of RR(,) and
store result in TT()
 'Vett() can be the global Stiffness Matrix or the global Mass Matrix
 'MaxInd is the number of elements in the Stiffness Matrix (NKGLO) or Mass Matrix
(NMGLO)

 'In the original subroutine MAXAD, NDOFT are formal arguments, but here these
variables have a global scope

 Dim KL, KU, II As Integer
 Dim Var1, Var2 As Double

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 51

 ReDim TT(NDOFT)

 If MaxInd = NDOFT Then
 'lumped mass matrix
 For i% = 1 To NDOFT
 TT(i%) = Vett(i%) * RR(i%, Icolu)
 Next i%
 Return
 End If

 'consistent mass matrix or stiffnes matrix
 For i% = 1 To NDOFT
 KL = MAXAD(i%)
 KU = MAXAD(i% + 1) - 1
 II = i% + 1
 Var1 = RR(i%, Icolu)
 For kk = KL To KU
 II -= 1
 TT(II) += Vett(kk) * Var1
 Next kk
 Next i%

 If NDOFT = 1 Then Return

 For i% = 2 To NDOFT
 KL = MAXAD(i%) + 1
 KU = MAXAD(i% + 1) - 1
 If KU - KL >= 0 Then
 II = i%
 Var2 = 0
 For kk = KL To KU
 II -= 1
 Var2 += Vett(kk) * RR(II, Icolu)
 Next kk
 TT(i%) += Var2
 End If
 Next i%

 End Sub

 Sub PrintProjections(AR() As Double, BR() As Double, NC As Integer, File1 As
StreamWriter)
 'print projections of stiffness and mass matrix

 Dim Text As String
 Dim Itemp, N1 As Integer
 Dim ii%

 N1 = NC + 1

 Text = vbCrLf
 Text += "Projection of stiffness matrix" + vbCrLf
 ii% = 1
 For i% = 1 To NC
 Itemp = ii% + NC - i%
 Call PrintArray_1_10_Real(Text, AR, ii%, Itemp)
 ii% += N1 - i%
 Next i%
 Text += "Projection of mass matrix" + vbCrLf
 ii% = 1
 For i% = 1 To NC
 Itemp = ii% + NC - i%
 Call PrintArray_1_10_Real(Text, BR, ii%, Itemp)
 ii% += N1 - i%
 Next i%
 File1.WriteLine(Text)

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 52

 End Sub

 Sub Jacobi(ByRef A() As Double, ByRef B() As Double, ByRef X(,) As Double, ByRef
EIGV() As Double, ByRef D() As Double, NC As Integer,
 NWA As Integer, TOLJ As Double, NSMAX As Integer, IFPR As Integer, File1 As
StreamWriter)

 'solve the generalized eigenproblem using the generalized Jacobi iteration

 Dim Text As String
 Dim n1, ii, Nsweep, nr, jp1, jm1, ljk, jj, kp1, km1, jk, kk, im1, ij, ik, lji, lki
As Integer
 Dim ji, ki, lkj As Integer
 Dim Eps, EptolA, EptolB, AKK, AJJ, AB, Check, SQCH, D1, D2, DEN, CA, CG As Double
 Dim AJ, BJ, AK, BK, xj, xk, Tol, Dif, EpsA, EpsB, BB, Dummy As Double
 Dim ConvReached As Boolean

 n1 = NC + 1
 ii = 1
 For i% = 1 To NC
 If A(ii) <= 0 Or B(ii) <= 0 Then
 Text = vbCrLf
 Text += "Error: solution stop" + vbCrLf
 Text += "matrices not positive definite" + vbCrLf
 Text += "Index: " + ii.ToString + vbCrLf
 Text += "Stiffness = " + String.Format("{0,12}",
A(ii).ToString("0.0000E+00")) + vbCrLf
 Text += "Mass = " + String.Format("{0,12}",
B(ii).ToString("0.0000E+00")) + vbCrLf
 File1.WriteLine(Text)
 Errore = True : Exit Sub
 End If

 D(i%) = A(ii) / B(ii)
 EIGV(i%) = D(i%)
 ii += n1 - i%
 Next i%

 ReDim X(NC, NC)
 For i% = 1 To NC
 X(i%, i%) = 1
 Next i%

 If NC = 1 Then Exit Sub

 'initialize sweep counter and begin iteration
 Nsweep = 0
 nr = NC - 1
 Do While Nsweep < NSMAX
 Nsweep += 1
 If IFPR <> 0 Then
 Text = vbCrLf
 Text += "Jacobi subroutine: sweep no. " + Nsweep.ToString + vbCrLf
 File1.WriteLine(Text)
 End If

 'check if present off-diagonal element is large enough to require zeroing
 Eps = (0.01 ^ Nsweep) ^ 2
 For j% = 1 To nr
 jp1 = j% + 1
 jm1 = j% - 1
 ljk = jm1 * NC - Int(jm1 * j% / 2)
 jj = ljk + j%
 For k% = jp1 To NC
 kp1 = k% + 1

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 53

 km1 = k% - 1
 jk = ljk + k%
 kk = km1 * NC - Int(km1 * k% / 2) + k%
 EptolA = (A(jk) * A(jk)) / (A(jj) * A(kk))
 EptolB = (B(jk) * B(jk)) / (B(jj) * B(kk))
 If EptolA >= Eps Or EptolB >= Eps Then
 'if zeroing is required, calculate the rotation matrix elements CA
and CG
 AKK = A(kk) * B(jk) - B(kk) * A(jk)
 AJJ = A(jj) * B(jk) - B(jj) * A(jk)
 AB = A(jj) * B(kk) - A(kk) * B(jj)
 Check = (AB * AB + 4 * AKK * AJJ) / 4
 If Check < 0 Then
 Text = vbCrLf
 Text += "Error: solution stop" + vbCrLf
 Text += "matrices not positive definite" + vbCrLf
 File1.WriteLine(Text)
 Errore = True : Exit Sub
 End If
 SQCH = Math.Sqrt(Check)
 D1 = AB / 2 + SQCH
 D2 = AB / 2 - SQCH
 DEN = D1
 If Math.Abs(D2) > Math.Abs(D1) Then DEN = D2
 If DEN = 0 Then
 CA = 0
 CG = -A(jk) / A(kk)
 Else
 CA = AKK / DEN
 CG = -AJJ / DEN
 End If

 'perform the generalized rotation, to zero the present off-
diagonal element
 If NC - 2 <> 0 Then
 If jm1 - 1 >= 0 Then
 For i% = 1 To jm1
 im1 = i% - 1
 ij = im1 * NC - Int(im1 * i% / 2) + j%
 ik = im1 * NC - Int(im1 * i% / 2) + k%
 AJ = A(ij)
 BJ = B(ij)
 AK = A(ik)
 BK = B(ik)
 A(ij) = AJ + CG * AK
 B(ij) = BJ + CG * BK
 A(ik) = AK + CA * AJ
 B(ik) = BK + CA * BJ
 Next i%
 End If
 If kp1 - NC <= 0 Then
 lji = jm1 * NC - Int(jm1 * j% / 2)
 lki = km1 * NC - Int(km1 * k% / 2)
 For i% = kp1 To NC
 ji = lji + i%
 ki = lki + i%
 AJ = A(ji)
 BJ = B(ji)
 AK = A(ki)
 BK = B(ki)
 A(ji) = AJ + CG * AK
 B(ji) = BJ + CG * BK
 A(ki) = AK + CA * AJ
 B(ki) = BK + CA * BJ
 Next i%
 End If
 If jp1 - km1 <= 0 Then
 lji = jm1 * NC - Int(jm1 * j% / 2)
 For i% = jp1 To km1

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 54

 ji = lji + i%
 im1 = i% - 1
 ik = im1 * NC - Int(im1 * i% / 2) + k%
 AJ = A(ji)
 BJ = B(ji)
 AK = A(ik)
 BK = B(ik)
 A(ji) = AJ + CG * AK
 B(ji) = BJ + CG * BK
 A(ik) = AK + CA * AJ
 B(ik) = BK + CA * BJ
 Next i%
 End If
 End If
 AK = A(kk)
 BK = B(kk)
 A(kk) = AK + 2 * CA * A(jk) + CA * CA * A(jj)
 B(kk) = BK + 2 * CA * B(jk) + CA * CA * B(jj)
 A(jj) += 2 * CG * A(jk) + CG * CG * AK
 B(jj) += 2 * CG * B(jk) + CG * CG * BK
 A(jk) = 0
 B(jk) = 0

 'update the eigenvector matrix after each rotation
 For i% = 1 To NC
 xj = X(i%, j%)
 xk = X(i%, k%)
 X(i%, j%) = xj + CG * xk
 X(i%, k%) = xk + CA * xj
 Next i%
 End If 'If EptolA >= Eps Or EptolB >= Eps
 Next k%
 Next j%

 'update the eigenvalues after each sweep
 ii = 1
 For i% = 1 To NC
 If A(ii) <= 0 Or B(ii) <= 0 Then
 Text = vbCrLf
 Text += "Error: solution stop" + vbCrLf
 Text += "matrices not positive definite" + vbCrLf
 Text += "Index: " + ii.ToString + vbCrLf
 Text += "Stiffness = " + String.Format("{0,12}",
A(ii).ToString("0.0000E+00")) + vbCrLf
 Text += "Mass = " + String.Format("{0,12}",
B(ii).ToString("0.0000E+00")) + vbCrLf
 File1.WriteLine(Text)
 Errore = True : Exit Sub
 End If
 EIGV(i%) = A(ii) / B(ii)
 ii += n1 - i%
 Next i%
 If IFPR <> 0 Then
 Text = vbCrLf
 Text += "Current eigenvalues in Jacobi are:" + vbCrLf
 Call PrintArray_1_10_Real(Text, EIGV, 1, NC)
 File1.WriteLine(Text)
 End If

 'check for convergence
 Dim EigenOK As Boolean = True
 For i% = 1 To NC
 Tol = TOLJ * D(i%)
 Dif = Math.Abs(EIGV(i%) - D(i%))
 If Dif > Tol Then
 EigenOK = False
 Exit For
 End If
 Next i%

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 55

 ConvReached = True
 Eps = TOLJ ^ 2
 EpsA = 1.0E-20
 EpsB = 1.0E-20
 If EigenOK Then
 'check all off-diagonal elements to see if another sweep is required
 EpsA = 1.0E-50
 EpsB = 1.0E-50
 For j% = 1 To nr
 jm1 = j% - 1
 jp1 = j% + 1
 lkj = jm1 * NC - Int(jm1 * j% / 2)
 jj = lkj + j%
 For k% = jp1 To NC
 km1 = k% - 1
 jk = lkj + k%
 kk = km1 * NC - Int(km1 * k% / 2) + k%
 Dummy = (A(jk) * A(jk)) / (A(jj) * A(kk))
 If EpsA < Dummy Then EpsA = Dummy
 Dummy = (B(jk) * B(jk)) / (B(jj) * B(kk))
 If EpsB < Dummy Then EpsB = Dummy
 Next k%
 Next j%
 Else
 '280 stuff
 End If

 If EpsA > Eps Or EpsB > Eps Then
 ConvReached = False
 End If

 'update D matrix and start a new sweep, if allowed
 '280 stuff: an extra D matrix update can be made, but I admit this for a
better readability of the program
 For i% = 1 To NC
 D(i%) = EIGV(i%)
 Next i%

 If ConvReached Then
 'fill out bottom triangle of resultant metrices and scale eigenvectors
 ii = 1
 For i% = 1 To NC
 BB = Math.Sqrt(B(ii))
 For k% = 1 To NC
 X(k%, i%) = X(k%, i%) / BB
 Next k%
 ii += n1 - i%
 Next i%
 Exit Do
 End If
 Loop

 End Sub

 Sub SturmCheck(EIGV() As Double, RTOLV() As Double, BUP() As Double, BLO() As Double,
BUPC() As Double, NEIV() As Double,
 NC As Integer, ByRef nei As Integer, RTOL As Double, ByRef Shift As
Double, File1 As StreamWriter)

 'subroutine to evaluate shift for Sturm sequence check

 Dim NROOTtmp, LM, ll As Integer
 Dim l%, i%
 Dim Ftol As Double
 Dim Text As String

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 56

 Ftol = 0.01
 For i% = 1 To NC
 BUP(i%) = EIGV(i%) * (1 + Ftol)
 BLO(i%) = EIGV(i%) * (1 - Ftol)
 Next i%

 NROOTtmp = 0
 For i% = 1 To NC
 If RTOLV(i%) < RTOL Then NROOTtmp += 1
 Next i%
 If NROOTtmp < 1 Then
 Text = vbCrLf
 Text += "Error: solution stop in SturmCheck" + vbCrLf
 Text += "no eigenvalues found." + vbCrLf
 File1.WriteLine(Text)
 Errore = True : Exit Sub
 End If

 If NROOTtmp < NROOT Then NROOT = NROOTtmp

 'find upper bounds on eigenvalues clusters
 For i% = 1 To NROOTtmp
 NEIV(i%) = 1
 Next i%

 If NROOTtmp = 1 Then
 BUPC(1) = BUP(1)
 LM = 1
 l% = 1
 i% = 2
 Else
 l% = 1
 i% = 2
 Do While i% <= NROOTtmp
 If BUP(i% - 1) > BLO(i%) Then
 NEIV(l%) += 1
 i += 1
 Else
 BUPC(l%) = BUP(i% - 1)
 If i% <= NROOTtmp Then
 l% += 1
 i% += 1
 If i% > NROOTtmp Then BUPC(l%) = BUP(i% - 1)
 End If
 End If
 Loop
 LM = l%
 End If

 If NROOTtmp <> NC Then
 Do While NROOTtmp < NC
 If BUP(i% - 1) <= BLO(i%) Then Exit Do
 If RTOLV(i%) >= RTOL Then Exit Do
 BUPC(l%) = BUP(i%)
 NEIV(l%) += 1
 NROOTtmp += 1
 i% += 1
 Loop
 End If

 'find shift
 If IFPR > 0 Then
 Text = vbCrLf
 Text += "Upper bounds of eigenvalue clusters" + vbCrLf
 Call PrintArray_1_10_Real(Text, BUPC, 1, LM)
 File1.WriteLine(Text)
 Text = vbCrLf
 Text += "Number of eigenvalues in each cluster" + vbCrLf

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 57

 Call PrintArray_1_10_Int(Text, NEIV, 1, LM)
 File1.WriteLine(Text)
 End If
 ll = LM - 1
 If LM > 1 Then
 Do Until l% = 1
 For i% = 1 To ll
 NEIV(l%) += NEIV(i%)
 Next i%
 l% -= 1
 ll -= 1
 Loop
 End If

 If IFPR > 0 Then
 Text = vbCrLf
 Text += "Number of eigenvalues less then upper bounds" + vbCrLf
 Call PrintArray_1_10_Int(Text, NEIV, 1, LM)
 File1.WriteLine(Text)
 End If

 l% = 0
 i% = 0
 Do While i% < LM
 i% += 1
 l% += 1
 If NEIV(i%) >= NROOTtmp Then Exit Do
 Loop
 Shift = BUPC(l%)
 nei = NEIV(l%)

 End Sub

 Function CalculateMassDOF()
 'calculate the number of mass degrees of freedom
 'mass matrix GLOBM and MAXAD have a global scope

 Dim Index As Integer

 CalculateMassDOF = 0

 If NMGLO = NDOFT Then
 'lumped mass matrix
 For Idofn = 1 To NDOFT
 If GLOBM(Idofn) <> 0 Then CalculateMassDOF += 1
 Next Idofn
 Else
 'consistent mass matrix
 For Idofn = 1 To NDOFT
 Index = MAXAD(Idofn)
 If GLOBM(Index) <> 0 Then CalculateMassDOF += 1
 Next Idofn
 End If

 End Function

 Sub PrintArray_1_10_Int(ByRef Text As String, Goofy() As Double, First As Integer,
Last As Integer)
 'add to Text the 1 dimensional array Goofy, in clusters of 10 integer numbers in
every row
 'starting from First element, to Last element

 Dim Ntens, i1, i2 As Integer

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 58

 Ntens = Int((Last - First) / 10)
 i2 = First - 1

 If Ntens > 0 Then
 For Itens = 1 To Ntens
 i1 = 10 * (Itens - 1) + First
 i2 = i1 + 9
 For Ielem = i1 To i2 - 1
 Text += String.Format("{0,5}", Goofy(Ielem).ToString("####0"))
 Next Ielem
 Text += String.Format("{0,5}", Goofy(i2).ToString("####0")) + vbCrLf
 Next Itens
 End If

 'print last elements
 Dim Nelem = (Last - First) + 1 - 10 * Ntens

 i1 = i2 + 1
 i2 = i1 + Nelem - 1

 If Nelem > 0 Then
 For Ielem = i1 To i2 - 1
 Text += String.Format("{0,5}", Goofy(Ielem).ToString("####0"))
 Next Ielem
 Text += String.Format("{0,5}", Goofy(i2).ToString("####0")) '+ vbCrLf
 End If

 End Sub

 Sub PrintArray_1_10_Real(ByRef Text As String, Goofy() As Double, First As Integer,
Last As Integer)
 'add to Text the 1 dimensional array Goofy, in clusters of 10 real numbers in
every row
 'starting from First element, to Last element

 Dim Ntens, i1, i2 As Integer

 Ntens = Int((Last - First) / 10)
 i2 = First - 1

 If Ntens > 0 Then
 For Itens = 1 To Ntens
 i1 = 10 * (Itens - 1) + First
 i2 = i1 + 9
 For Ielem = i1 To i2 - 1
 Text += String.Format("{0,12}", Goofy(Ielem).ToString("0.0000E+00"))
 Next Ielem
 Text += String.Format("{0,12}", Goofy(i2).ToString("0.0000E+00")) + vbCrLf
 Next Itens
 End If

 'print last elements
 Dim Nelem = (Last - First) + 1 - 10 * Ntens

 i1 = i2 + 1
 i2 = i1 + Nelem - 1

 If Nelem > 0 Then
 For Ielem = i1 To i2 - 1
 Text += String.Format("{0,12}", Goofy(Ielem).ToString("0.0000E+00"))
 Next Ielem
 Text += String.Format("{0,12}", Goofy(i2).ToString("0.0000E+00")) + vbCrLf
 End If

 End Sub

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 59

10 Appendix B – Program MdFem

IN NO EVENT SHALL PAOLO VARAGNOLO BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE
OF THIS SOFTWARE AND ITS DOCUMENTATION. PAOLO VARAGNOLO SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE AND ACCOMPANYING
DOCUMENTATION PROVIDED HERE, IS PROVIDED "AS IS". PAOLO VARAGNOLO HAS NO OBLIGATION
TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

The routines that have not yet been presented are listed hereunder. Some missing routines may be

found in [9].

The program execution begins with the subroutine MDfem_Execute, which initializes the variables,

reads the problem data, calculates the elements’ local axes and finally calls the subroutine

SubSpace where the dynamic analysis is performed.

The subroutine that reads the problem data will not be presented, for the aim of this work is to

focus on the substance of FEM programming. The program can nevertheless be used, with the data

directly inserted in a specifically re-written subroutine ReadMdFemFile, presented in §10.1: the

data are those of example Participant Masses 1 in §6.3 (with lumped mass matrix and CQC

combination). Data input is usually performed in a graphic pre-processor environment, that records

all the values in a file, respecting precise specifications: describing and listing these subroutines

would have required a discussion that is beyond the scope of this work.

 Sub MDfem_Execute(dtmStart As Date)

 Dim x1, x2, y1, y2, z1, z2 As Double

 FileClose()

 Call InitVariables()

 Call ReadMdFemFile()

 'calculate transformation T matrix for all the elements: Tmat(,,)
 For Ielem = 1 To Nelem
 x1 = Xcoor(Inc1(Ielem)) : y1 = Ycoor(Inc1(Ielem)) : z1 = Zcoor(Inc1(Ielem))
 x2 = Xcoor(Inc2(Ielem)) : y2 = Ycoor(Inc2(Ielem)) : z2 = Zcoor(Inc2(Ielem))

 Call LocalAxes_Vitaliani_PV(Ielem, x1, y1, z1, x2, y2, z2)
 Next Ielem

 If Eigenvalues Then
 Call SubSpace() 'calculate vibration modes
 End If
 Call MDFEM(dtmStart) 'calculate FEM static analysis

 End Sub

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 60

10.1 Input data

 Sub ReadMdFemFile()

 'this is not the real reading routine:

 'it only sets the data for the tutorial "Participant Masses 1L CQC" example

 Dim Icase, Ielem, Ipoin As Integer

 RTOL = 0.000001

 NITEM = 16

 IFSS = 1

 IFPR = 0

 Tit1$ = "Participating Masses 1L CQC - units: kN, m, s"

 Npoin = 6

 Nelem = 6

 Ncase = 2

 Ntype = 2

 IFPOS = 1

 Eigenvalues = True

 NROOT = 7

 IfLumped = True

 NITEM = 16

 IFSS = 1

 IFPR = 0

 Gaccel = 9.807

 ' ...

 Nmats = 2

 NCOMB = 0

 Ngaps = 0

 Call MdFemArrayDimensions()

 'nodal coordinates

 Xcoor = {0, 0, 5, 0, 5, 0, 5}

 Ycoor = {0, 0, 0, 0, 0, 0, 0}

 Zcoor = {0, 0, 0, 3, 3, 6, 6}

 'fixity codes

 Iffix(1) = 1 : Iffix(2) = 1

 Iffiy(1) = 1 : Iffiy(2) = 1

 Iffiz(1) = 1 : Iffiz(2) = 1

 Ifrxx(1) = 1 : Ifrxx(2) = 1

 Ifryy(1) = 1 : Ifryy(2) = 1

 Ifrzz(1) = 1 : Ifrzz(2) = 1

 For Ipoin = 1 To Npoin

 IDDOF(1, Ipoin) = Iffix(Ipoin)

 IDDOF(2, Ipoin) = Iffiy(Ipoin)

 IDDOF(3, Ipoin) = Iffiz(Ipoin)

 IDDOF(4, Ipoin) = Ifrxx(Ipoin)

 IDDOF(5, Ipoin) = Ifryy(Ipoin)

 IDDOF(6, Ipoin) = Ifrzz(Ipoin)

 Next Ipoin

 'properties

 PROPS(1, 1) = 32588108.0 'Young modulus

 PROPS(1, 2) = 0.32 'Area

 PROPS(1, 3) = 0.01706667 'Jx

 PROPS(1, 4) = 0.00426667 'Jy

 PROPS(1, 5) = 0 'Width (only for Winkler elements)

 PROPS(1, 6) = 25.0 'Weight density

 PROPS(1, 7) = 2.5491996 'Mass density

 PROPS(1, 8) = 0.01169067 'torsional inertia

 PROPS(1, 9) = 0.1 'Poisson ratio

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 61

 PROPS(1, 10) = 0.5 * PROPS(1, 1) / (1 + PROPS(1, 9)) 'G modulus

 TrazFlag(1) = 0 'not an only tension element

 PROPS(Nmats, 1) = PROPS(1, 1)

 PROPS(Nmats, 2) = PROPS(1, 2)

 PROPS(Nmats, 3) = 0.00426667 'Jx

 PROPS(Nmats, 4) = 0.01706667 'Jy

 PROPS(Nmats, 5) = PROPS(1, 5)

 PROPS(Nmats, 6) = PROPS(1, 6)

 PROPS(Nmats, 7) = PROPS(1, 7)

 PROPS(Nmats, 8) = PROPS(1, 8)

 PROPS(Nmats, 9) = PROPS(1, 9)

 PROPS(Nmats, 10) = PROPS(1, 10)

 TrazFlag(Nmats) = TrazFlag(1)

 'element definition

 NelOnlyTraz = 0

 Mater = {0, 1, 1, 1, 1, 2, 2}

 Inc1 = {0, 1, 2, 3, 4, 3, 5}

 Inc2 = {0, 3, 4, 5, 6, 4, 6}

 'loads data

 Icase = 1

 Titl$(Icase) = "C=1 - G1: own weights"

 Gravity_Case(Icase) = -3

 Icase = 2

 Titl$(Icase) = "C=2 - G2: permanent LOADS"

 For Ielem = 5 To 6

 LoadType(Icase, Ielem) = 1

 Dload(Icase, Ielem, 1) = 0 'x load at node i

 Dload(Icase, Ielem, 2) = 0 'y load at node i

 Dload(Icase, Ielem, 3) = -15.0 'z load at node i

 Dload(Icase, Ielem, 4) = Dload(Icase, Ielem, 1) 'x load at node j

 Dload(Icase, Ielem, 5) = Dload(Icase, Ielem, 2) 'y load at node j

 Dload(Icase, Ielem, 6) = Dload(Icase, Ielem, 3) 'z load at node j

 Next Ielem

 'Spectrum data

 NpoiSpec = 44

 DampCsi = 0.05

 BehFact = 1.0

 IfCQC = True

 Ifspe = 1

 ReDim Spectrum(NpoiSpec, 2)

 Spectrum = {

 {0.0, 0.0, 0.0},

 {0.0, 0.00E+00, 0.146},

 {0.0, 0.242, 0.257},

 {0.0, 0.363, 0.257},

 {0.0, 0.727, 0.257},

 {0.0, 0.787, 0.238},

 {0.0, 0.847, 0.221},

 {0.0, 0.907, 0.206},

 {0.0, 0.967, 0.193},

 {0.0, 1.03, 0.182},

 {0.0, 1.09, 0.172},

 {0.0, 1.15, 0.163},

 {0.0, 1.21, 0.155},

 {0.0, 1.27, 0.148},

 {0.0, 1.33, 0.141},

 {0.0, 1.39, 0.135},

 {0.0, 1.45, 0.129},

 {0.0, 1.51, 0.124},

 {0.0, 1.57, 0.119},

 {0.0, 1.63, 0.115},

 {0.0, 1.69, 0.111},

 {0.0, 1.75, 0.107},

 {0.0, 1.81, 0.103},

 {0.0, 1.87, 0.1},

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 62

 {0.0, 1.93, 0.097},

 {0.0, 2.07, 0.0839},

 {0.0, 2.22, 0.0733},

 {0.0, 2.36, 0.0646},

 {0.0, 2.5, 0.0574},

 {0.0, 2.65, 0.0513},

 {0.0, 2.79, 0.0462},

 {0.0, 2.94, 0.0418},

 {0.0, 3.08, 0.0379},

 {0.0, 3.22, 0.0346},

 {0.0, 3.37, 0.0317},

 {0.0, 3.51, 0.0292},

 {0.0, 3.66, 0.0269},

 {0.0, 3.8, 0.0249},

 {0.0, 3.94, 0.0231},

 {0.0, 4.09, 0.0215},

 {0.0, 4.23, 0.0201},

 {0.0, 4.38, 0.0188},

 {0.0, 4.52, 0.0176},

 {0.0, 4.66, 0.0165},

 {0.0, 4.81, 0.0156}

 }

 End Sub

10.2 Global scope variables
The next table shows the list of global scope variables.

The global scope variables listed in the MdFem program published in [9] must be added to these.

Any change of type from single to double or vice versa involves different approximations in the

calculations and consequently gives little changes in the results.

 Public dtmStart, dtmEnd As Date

 Public GLOBM(), MassC(21), RTOL, Gaccel As Double

 Public CircFreq(), Frequency(), Period() As Double

 Public NMGLO, NROOT, NITEM, IFSS, IFPR As Integer

 Public Eigenvalues, IfLumped As Boolean

 Public ModFile As String

 Public PartFact(,), PartMas(,), TotalMass() As Double

 Public NodalMass(), ModalShape(,,), SpecDisp(,,), CombStruDisp() As Double

 Public Roij(,) As Double

 Public ShearForcesCQC(Npoin, NDIME), ShearForcesSRSS(Npoin, NDIME) As Double

 Public SeismicForceCQC(,), SeismicForceSRSS(,) As Double

 Public ValAg_g, ValF0, ValTc, DampCsi, S_s, C_c, S_t, ModalAcc() As Double

 Public IfCQC As Boolean

 Public SpeFile As String

 Public Ifspe, NpoiSpec As Integer

 Public BehFact, Spectrum(,) As Single

10.3 Inizializations and array dimensioning

 Sub MdFemArrayDimensions()

 'main arrays dimensioning

 ReDim Iffix(Npoin + Ngaps), Iffiy(Npoin + Ngaps), Iffiz(Npoin + Ngaps), Ifrxx(Npoin

+ Ngaps), Ifryy(Npoin + Ngaps), Ifrzz(Npoin + Ngaps)

 ReDim Xcoor(Npoin + Ngaps), Ycoor(Npoin + Ngaps), Zcoor(Npoin + Ngaps)

 ReDim SPRIN(NDOFN, Npoin + Ngaps), GAPS(3, Npoin + Ngaps)

 ReDim Inc1(Nelem + Ngaps), Inc2(Nelem + Ngaps)

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 63

 ReDim Mater(Nelem + Ngaps), OnlyTraz(Nelem + Ngaps)

 ReDim IDDOF(NEVAB, Npoin + Ngaps)

 ReDim XYCOO(NEVAB, Nelem + Ngaps), IJINC(Nelem + Ngaps, 2)

 ReDim LMDOF(NEVAB, Nelem + Ngaps)

 ReDim Comb_Factor(NCOMB, Ncase), Tit_Comb(NCOMB), GravityAmplif(NCOMB)

 ReDim TrazFlag(Nmats), PROPS(Nmats + Ngaps + 1, 11)

 ReDim GlobF(Ncase + NCOMB + NROOT, Nelem + Ngaps, 2 * NDOFN), TREAC(Ncase + NCOMB

+ NROOT, Npoin + Ngaps, NDOFN)

 ReDim Displ(Ncase + NCOMB + NROOT, Npoin, NDOFN)

 ReDim Stre1(Ncase + NCOMB + NROOT, Nelem + Ngaps, NSTRE + 2), Stre2(Ncase + NCOMB

+ NROOT, Nelem + Ngaps, NSTRE + 2)

 ReDim Titl$(Ncase + NCOMB + NROOT), Dload(Ncase + NCOMB + NROOT, Nelem + Ngaps,

6)

 ReDim Gravity_Case(Ncase + NCOMB + NROOT), PointLoad(Ncase + NCOMB + NROOT, Npoin

+ Ngaps, NDOFN)

 ReDim LoadType(Ncase + NCOMB + NROOT, Nelem + Ngaps), NpointLoads(Ncase + NCOMB +

NROOT), NspanLoads(Ncase + NCOMB + NROOT)

 ReDim Rx3D(Ncase + NCOMB), Ry3D(Ncase + NCOMB), Rz3D(Ncase + NCOMB), Rxx3D(Ncase

+ NCOMB), Ryy3D(Ncase + NCOMB), Rzz3D(Ncase + NCOMB)

 ReDim Tmat(Nelem, 6, 6) 'Tmat is the transformation matrix from local to global

coordinates

 End Sub

10.4 Other Subroutines
The first subroutine in this paragraph is the SubSpace program core, which manages the dynamic

analysis with the calls to the main subroutines. The other subroutines follow, in no particular order.

The subroutines presented within the text are part of the program and will not be re-presented

below.

 Sub SubSpace()

 ' ==

 ' this subroutine comes from Sub MDFEM and is modified

 ' in order to obtain the smallest eigenvalues and the corresponding eigenvectors,

 ' according to the SSPACE program published in K. J. Bathe: "Finite Element Procedures

In Engineering Analysis

 '

 ' WRITTEN BY: P. VARAGNOLO == pvi20 ==

 ' ==

 Dim FileDummy As String

 Dim FileWork1 As String = myPath + "WORK1" 'open a file where will be saved the

element GLOBAL stiffness matrices

 Dim FileWork3 As String = myPath + "WORK3" 'open a file where will be saved the

element LOCAL stiffness matrices

 Dim File1 As System.IO.StreamWriter = Nothing

 Dim File2 As System.IO.StreamWriter = Nothing 'a dummy file to be killed after it's

use

 Errore = False

 If Ngaps > 0 Then

 Dim Text = "Non linear elements such as Gaps not allowed for Modal Analysis."

 MsgBox(Text, vbExclamation, "Warning")

 Exit Sub

 End If

 If NelOnlyTraz > 0 Then

 Dim Text = "Non linear elements such as tie-beams not allowed for Modal Analysis."

 MsgBox(Text, vbExclamation, "Warning")

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 64

 Exit Sub

 End If

 If Dir(ModFile, 0) <> "" Then Kill(ModFile)

 FileDummy = DataFile.Substring(0, Len(DataFile) - 4) + ".sel" : If Dir(FileDummy, 0)

<> "" Then Kill(FileDummy)

 If Dir(myPath + "work1", 0) <> "" Then Kill(myPath + "work1") 'kill work1 if

it exists from previous calculations

 If Dir(myPath + "work3", 0) <> "" Then Kill(myPath + "work3") 'kill work3 if

it exists from previous calculations

 File1 = My.Computer.FileSystem.OpenTextFileWriter(ModFile, True)

 File2 = My.Computer.FileSystem.OpenTextFileWriter(FileDummy, True)

 Call Write1_Eigen(File1)

 Call SetNodalData(File2) 'File2 is the Dummy streamwriter

 If Errore Then

 FileClose() : Exit Sub

 End If

 Call Write2_Eigen(File1) 'WriteProperties

 ' *** NUMERATION OF DEGREES OF FREEDOM

 Call DOFNUM()

 ' *** CALL ELEMENT SUBROUTINE (+ generate gaps elements)

 Call INPELE(File2) 'File2 is the Dummy streamwriter

 ' *** CALCULATE ADDRESS OF DIAGONAL ELEMENTS

 Call ADDRES()

 ' *** DEAL WITH LOAD CASES AND LOAD COMBINATIONS (the combinations are treated as

Load Cases)

 ReDim DloaL(Ncase + NCOMB + NROOT, Nelem + Ngaps, 2 * NDIME) 'carichi distribuiti in

coordinate locali

 For Icase = 1 To Ncase + NCOMB

 Call LOADS(Icase, 1, File2) 'File2 is the Dummy streamwriter

 Next Icase

 Call CreateStiffnessMatrix(FileWork1, FileWork3) ' *** CALCULATE ELASTIC STIFFNESS

MATRIX

 Call CreateMassMatrix() ' *** CALCULATE MASS MATRIX

 Call Sspace(File1) ' *** calculate eigenvalues and eigenvectors

 If Errore Then

 FileClose()

 Dim Text = "Error calculating eigenvalues."

 MsgBox(Text, vbExclamation, "Warning")

 End If

 If Ifspe > 0 Then

 Call STRBER(0, 1, Nelem, FileWork3)

 Call OutSTRBE(0, 1, Nelem, File1, File2)

 Call SeismicForcesCalculationCQC()

 Call WriteSeismicForces(File1)

 End If

 'restore original IDDOF(,) values - those read from input data

 For Ipoin = 1 To Npoin

 If Ntype = 2 Or Ntype = 3 Then

 IDDOF(1, Ipoin) = Iffix(Ipoin)

 IDDOF(2, Ipoin) = Iffiy(Ipoin)

 IDDOF(3, Ipoin) = Iffiz(Ipoin)

 IDDOF(4, Ipoin) = Ifrxx(Ipoin)

 IDDOF(5, Ipoin) = Ifryy(Ipoin)

 IDDOF(6, Ipoin) = Ifrzz(Ipoin)

 End If

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 65

 Next Ipoin

 FileClose()

 File1.Close()

 File2.Close() : Kill(FileDummy) 'this dynamic module made use of some of the

static routines: now the static output file must be killed

 If Dir(myPath + "WORK1", 0) <> "" Then Kill(myPath + "WORK1")

 If Dir(myPath + "WORK3", 0) <> "" Then Kill(myPath + "WORK3")

 End Sub

 Sub CreateMassMatrix()

 Dim Icase As Integer

 ReDim TotalMass(NDOFN), NodalMass(Npoin)

 Call AssembMasses() ' *** CALL MASS SUBROUTINE

 ' *** ASSEMBLE LOADS MASSES

 If Ncase > 1 Then

 Icase = 2 'dead non structural loads

 Call AddLoadMass(Icase)

 End If

 End Sub

 Sub AssembMasses()

 'CREATE ELEMENT MASS MATRICES AND ASSEMBLE GLOBAL MASS MATRIX

 Dim Ielem As Integer

 If IfLumped Then

 NMGLO = NDOFT

 Else

 NMGLO = NKGLO

 End If

 ReDim GLOBM(NMGLO)

 ' *** LOOP OVER ELEMENT GROUPS

 For Ielem = 1 To Nelem

 If Ntype = 2 Or Ntype = 3 Then Call BeamMass(Ielem)

 Next Ielem

 End Sub

 Sub BeamMass(Ielem As Integer)

 'MASS GLOBAL MATRIX FOR BEAM ELEMENTS

 Dim Imats, ii, Idofn As Integer

 Dim BeamMass(2) As Single 'element mass at nodes i, j

 Dim Lengt, Leng2, Delt1(NDIME), Mmat(12, 12), Trasf(12, 12), Sum, Cons1, Cons2 As

Double

 Dim Sa(12, 24), Asa(24, 24) As Double 'same matrices as for Stiffness matrix

 ReDim MassC(78)

 Imats = Mater(Ielem)

 If PROPS(Imats, 7) = 0 Then Exit Sub

 Leng2 = 0#

 For Idime = 1 To NDIME

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 66

 Delt1(Idime) = XYCOO(Idime + 3, Ielem) - XYCOO(Idime, Ielem)

 Leng2 = Leng2 + Delt1(Idime) * Delt1(Idime)

 Next Idime

 Lengt = Math.Sqrt(Leng2)

 BeamMass(1) = PROPS(Imats, 7) * PROPS(Imats, 2) * Lengt / 2

 BeamMass(2) = BeamMass(1)

 Cons1 = PROPS(Imats, 7) * PROPS(Imats, 2) * Lengt / 420

 Cons2 = PROPS(Imats, 8) / PROPS(Imats, 2) * 70

 If IfLumped Then

 Mmat(1, 1) = Cons1 * 210

 Mmat(2, 2) = Mmat(1, 1)

 Mmat(3, 3) = Mmat(1, 1)

 Mmat(7, 7) = Mmat(1, 1)

 Mmat(8, 8) = Mmat(1, 1)

 Mmat(9, 9) = Mmat(1, 1)

 'lumped matrix is already global and is stored in a vector according to Bathe

technique in STAP program (only diagonal elements)

 For Ievab = 1 To NEVAB

 MassC(Ievab) = Mmat(Ievab, Ievab)

 Next Ievab

 Else

 'consistent 3-D mass matrix

 'Mjj

 Mmat(1, 1) = Cons1 * 140

 Mmat(2, 2) = Cons1 * 156

 Mmat(2, 6) = Cons1 * 22 * Lengt

 Mmat(3, 3) = Cons1 * 156

 Mmat(3, 5) = -Cons1 * 22 * Lengt

 Mmat(4, 4) = 0 'Cons2 * 2 '0

 Mmat(5, 3) = Mmat(3, 5)

 Mmat(5, 5) = Cons1 * 4 * Leng2

 Mmat(6, 2) = Mmat(2, 6)

 Mmat(6, 6) = Mmat(5, 5)

 'Mkk

 For Idofn = 1 To NDOFN

 Mmat(Idofn + NDOFN, Idofn + NDOFN) = Mmat(Idofn, Idofn)

 Next Idofn

 Mmat(2 + NDOFN, 6 + NDOFN) = -Mmat(2, 6)

 Mmat(3 + NDOFN, 5 + NDOFN) = -Mmat(3, 5)

 Mmat(5 + NDOFN, 3 + NDOFN) = -Mmat(5, 3)

 Mmat(6 + NDOFN, 2 + NDOFN) = -Mmat(6, 2)

 'Mkj

 Mmat(1 + NDOFN, 1) = Cons1 * 70

 Mmat(2 + NDOFN, 2) = Cons1 * 54

 Mmat(2 + NDOFN, 6) = Cons1 * 13 * Lengt

 Mmat(3 + NDOFN, 3) = Cons1 * 54

 Mmat(3 + NDOFN, 5) = -Cons1 * 13 * Lengt

 Mmat(4 + NDOFN, 4) = 0 'Cons2 '0

 Mmat(5 + NDOFN, 3) = -Mmat(3 + NDOFN, 5)

 Mmat(5 + NDOFN, 5) = -Cons1 * 3 * Leng2

 Mmat(6 + NDOFN, 2) = -Mmat(2 + NDOFN, 6)

 Mmat(6 + NDOFN, 6) = -Cons1 * 3 * Leng2

 'Mjk

 For Irow = 1 + NDOFN To NDOFN + NDOFN

 For Icol = 1 To NDOFN

 Mmat(Icol, Irow) = Mmat(Irow, Icol)

 Next Icol

 Next Irow

 'if lumped matrix is requested, don't make [T]T * [M] * [T] because global

and local matrices are the same

 Call FillTrasf(Ielem, Trasf) 'fill Trasf(12, 12) matrix with 4 Transformation

Tmat(6, 6)

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 67

 'first product: Sa(12, 12) = [T]transp * [Mmat]

 'change rows and columns of Tmat to obtain the transpose matrix

 For Ievab = 1 To NEVAB

 For Jevab = 1 To NEVAB

 Sum = 0

 For Kevab = 1 To NEVAB

 Sum += Trasf(Kevab, Ievab) * Mmat(Kevab, Jevab)

 Next Kevab

 Sa(Ievab, Jevab) = Sum

 Next Jevab

 Next Ievab

 'second product: Asa(12, 12) = [Sa] * [T]

 For Ievab = 1 To NEVAB

 For Jevab = 1 To NEVAB

 Sum = 0

 For Kevab = 1 To NEVAB

 Sum += Sa(Ievab, Kevab) * Trasf(Kevab, Jevab)

 Next Kevab

 Asa(Ievab, Jevab) = Sum

 Next Jevab

 Next Ievab

 'store global mass matrix in a vector according to Bathe technique in STAP

program

 ii = 0

 For Irow = 1 To 12

 For Icol = Irow To 12

 ii += 1

 MassC(ii) = Asa(Irow, Icol)

 Next Icol

 Next Irow

 End If

 Call ADDBAN_Mass(Ielem, BeamMass)

 End Sub

 Sub ADDBAN_Mass(Ielem As Integer, BeamMass() As Single)

 Dim N1, Idofn, Jdofn, Ievab, MAADD, Kevab, IJdif, Inde1, Inde2 As Integer

 N1 = 0

 'calculate masses on not retrained dof

 For Ievab = 1 To NEVAB

 Idofn = LMDOF(Ievab, Ielem)

 If Idofn <> 0 Then

 If Ievab <= NDOFN Then

 TotalMass(Ievab) += BeamMass(1)

 If Ievab = 1 Then NodalMass(Inc1(Ielem)) += BeamMass(1)

 Else

 TotalMass(Ievab - NDOFN) += BeamMass(2)

 If Ievab = NDOFN + 1 Then NodalMass(Inc2(Ielem)) += BeamMass(2)

 End If

 End If

 Next Ievab

 If IfLumped Then

 'lumped mass matrix

 For Ievab = 1 To NEVAB

 Idofn = LMDOF(Ievab, Ielem)

 If Idofn <> 0 Then

 GLOBM(Idofn) += MassC(Ievab)

 End If

 Next Ievab

 Else

 'consistent mass matrix

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 68

 For Ievab = 1 To NEVAB

 Idofn = LMDOF(Ievab, Ielem)

 If Idofn > 0 Then

 MAADD = MAXAD(Idofn)

 Kevab = Ievab

 For Jevab = 1 To NEVAB

 Jdofn = LMDOF(Jevab, Ielem)

 IJdif = Idofn - Jdofn

 If Jdofn > 0 And IJdif >= 0 Then

 Inde1 = MAADD + IJdif

 Inde2 = Kevab

 If Jevab >= Ievab Then Inde2 = Jevab + N1

 GLOBM(Inde1) += MassC(Inde2)

 End If

 Kevab = Kevab + NEVAB - Jevab

 Next Jevab

 End If

 N1 = N1 + NEVAB - Ievab

 Next Ievab

 End If

 End Sub

 Sub Write1_Eigen(File1 As StreamWriter)

 Dim Dumm$ = "", Spc$ = ""

 PrtString = Spc$ + "==" + vbCrLf

 PrtString += Spc$ + " M D F E M - DYNAMIC RESPONSE MODULE " +

vbCrLf

 PrtString += Spc$ + "==" +

vbCrLf

 PrtString += vbCrLf : PrtString += vbCrLf

 PrtString += Spc$ + "*** G E N E R A L D A T A ***" + vbCrLf

 PrtString += vbCrLf

 PrtString += Spc$ + "N. OF POINTS =" +

String.Format("{0,5}", Npoin.ToString("####0")) + vbCrLf

 PrtString += Spc$ + "N. OF ELEMENTS =" +

String.Format("{0,5}", Nelem.ToString("####0")) + vbCrLf

 PrtString += Spc$ + "N. OF EIGENVALUES REQUESTED =" +

String.Format("{0,5}", NROOT.ToString("####0")) + vbCrLf

 Dumm$ = "Consistent"

 If IfLumped Then Dumm$ = "Lumped"

 PrtString += Spc$ + "TYPE OF MASS MATRICES : " + Dumm$ +

vbCrLf

 PrtString += Spc$ + "N. OF SUBSPACE ITERATIONS =" +

String.Format("{0,5}", NITEM.ToString("####0")) + vbCrLf

 PrtString += Spc$ + "TOLERANCE FOR EIGENVALUES CONVERGENCE CHECK =" +

String.Format("{0,11}", RTOL.ToString("0.0000E+00")) + vbCrLf

 Dumm$ = "No"

 If IFSS = 1 Then Dumm$ = "Yes"

 PrtString += Spc$ + "STURM SEQUENCE CHECK : " +

String.Format("{0,4}", Dumm$) + vbCrLf

 Dumm$ = "No"

 If IFPR = 1 Then Dumm$ = "Yes"

 PrtString += Spc$ + "PRINT INTERMEDIATE ITERATION RESULTS : " +

String.Format("{0,4}", Dumm$) + vbCrLf

 PrtString += vbCrLf

 PrtString += Spc$ + "for the static analysis refer to the xxxx.dat file" + vbCrLf

 PrtString += vbCrLf

 If Not IfLumped Then

 PrtString += Spc$ + "IMPORTANT REMARK!" + vbCrLf

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 69

 PrtString += Spc$ + "If consistent mass matrix is requested (see above),

torsional modes are neglected." + vbCrLf

 PrtString += Spc$ + "To modify this assumption, some changes in Sub BeamMass

are needed." + vbCrLf

 End If

 PrtString += vbCrLf

 File1.WriteLine(PrtString)

 End Sub

 Sub Write2_Eigen(File1 As StreamWriter)

 Dim Spc$ = ""

 PrtString = Spc$ + "* * * M A T E R I A L P R O P E R T I E S * * *" + vbCrLf

 PrtString += vbCrLf

 PrtString += Spc$ + " Set mass density" + vbCrLf

 ' *** LOOP OVER MATERIAL SETS

 For Isets = 1 To Nmats

 PrtString += Spc$ + String.Format("{0,5}", Isets.ToString("####0")) + " "

 PrtString += String.Format("{0,12}", PROPS(Isets, 7).ToString("0.0000E+00"))

+ vbCrLf

 Next Isets

 File1.WriteLine(PrtString)

 End Sub

 Sub AddLoadMass(Icase As Integer)

 Dim Ldofn, Lkglo As Long

 Dim p1, p2, Mass, Mass_i, Mass_j As Double

 Dim Delt1(3), Leng2, Lengt As Double

 If Gaccel = 0 Then Exit Sub

 'add point loads mass: PointLoad array contains loads referred to the global

system

 For Ipoin = 1 To Npoin

 If Ntype = 2 Or Ntype = 3 Then

 Mass = Math.Abs(PointLoad(Icase, Ipoin, 1) / Gaccel) 'Fx

 Mass += Math.Abs(PointLoad(Icase, Ipoin, 2) / Gaccel) 'Fy

 Mass += Math.Abs(PointLoad(Icase, Ipoin, 3) / Gaccel) 'Fz

 If Mass > 0 Then

 NodalMass(Ipoin) += Mass

 For Idofn = 1 To NDOFN

 Ldofn = IDDOF(Idofn, Ipoin)

 If Ldofn <> 0 Then

 TotalMass(Idofn) += Mass 'nodal masses can act in x, y, z

directions and are effective masses for all dof

 End If

 Next Idofn

 If IfLumped Then

 Lkglo = IDDOF(1, Ipoin)

 GLOBM(Lkglo) += Mass

 Lkglo = IDDOF(2, Ipoin)

 GLOBM(Lkglo) += Mass

 Lkglo = IDDOF(3, Ipoin)

 GLOBM(Lkglo) += Mass

 Else

 Lkglo = MAXAD(IDDOF(1, Ipoin))

 GLOBM(Lkglo) += Mass

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 70

 Lkglo = MAXAD(IDDOF(2, Ipoin))

 GLOBM(Lkglo) += Mass

 Lkglo = MAXAD(IDDOF(3, Ipoin))

 GLOBM(Lkglo) += Mass

 End If

 End If

 End If

 Next Ipoin

 'add linear loads mass: Eload array contains loads already tranformed from the

local system to the global system

 For Ielem = 1 To Nelem

 Leng2 = 0

 For Idime = 1 To NDIME

 Delt1(Idime) = XYCOO(Idime + 3, Ielem) - XYCOO(Idime, Ielem)

 Leng2 += Delt1(Idime) * Delt1(Idime)

 Next Idime

 Lengt = Math.Sqrt(Leng2)

 If Ntype = 2 Or Ntype = 3 Then

 p1 = (Dload(Icase, Ielem, 1) + Dload(Icase, Ielem, 2) + Dload(Icase,

Ielem, 3)) / Gaccel 'qx-i + qy-i + qz-i

 p2 = (Dload(Icase, Ielem, 4) + Dload(Icase, Ielem, 5) + Dload(Icase,

Ielem, 6)) / Gaccel 'qx-j + qy-j + qz-j

 Mass_i = Math.Abs(Lengt * (p1 / 2 + (p2 - p1) / 6))

 If Mass_i > 0 Then

 NodalMass(Inc1(Ielem)) += Mass_i

 For Idofn = 1 To NDOFN

 Ldofn = IDDOF(Idofn, Inc1(Ielem))

 If Ldofn <> 0 Then

 TotalMass(Idofn) += Mass_i 'linear loads masses can act in x,

y, z directions and are effective masses for all dof

 End If

 Next Idofn

 If IfLumped Then

 Lkglo = IDDOF(1, Inc1(Ielem))

 GLOBM(Lkglo) += Mass_i

 Lkglo = IDDOF(2, Inc1(Ielem))

 GLOBM(Lkglo) += Mass_i

 Lkglo = IDDOF(3, Inc1(Ielem))

 GLOBM(Lkglo) += Mass_i

 Else

 Lkglo = MAXAD(IDDOF(1, Inc1(Ielem)))

 GLOBM(Lkglo) += Mass_i

 Lkglo = MAXAD(IDDOF(2, Inc1(Ielem)))

 GLOBM(Lkglo) += Mass_i

 Lkglo = MAXAD(IDDOF(3, Inc1(Ielem)))

 GLOBM(Lkglo) += Mass_i

 End If

 End If

 Mass_j = Math.Abs(Lengt * (p1 / 2 + (p2 - p1) / 3))

 If Mass_j > 0 Then

 NodalMass(Inc2(Ielem)) += Mass_j

 For Idofn = 1 To NDOFN

 Ldofn = IDDOF(Idofn, Inc2(Ielem))

 If Ldofn <> 0 Then

 TotalMass(Idofn) += Mass_j 'linear loads masses can act in x,

y, z directions and are effective masses for all dof

 End If

 Next Idofn

 If IfLumped Then

 Lkglo = IDDOF(1, Inc2(Ielem))

 GLOBM(Lkglo) += Mass_j

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 71

 Lkglo = IDDOF(2, Inc2(Ielem))

 GLOBM(Lkglo) += Mass_j

 Lkglo = IDDOF(3, Inc2(Ielem))

 GLOBM(Lkglo) += Mass_j

 Else

 Lkglo = MAXAD(IDDOF(1, Inc2(Ielem)))

 GLOBM(Lkglo) += Mass_j

 Lkglo = MAXAD(IDDOF(2, Inc2(Ielem)))

 GLOBM(Lkglo) += Mass_j

 Lkglo = MAXAD(IDDOF(3, Inc2(Ielem)))

 GLOBM(Lkglo) += Mass_j

 End If

 End If

 End If

 Next Ielem

 End Sub

The subroutine Sspace is represented because there are some differences from the one listed in

Appendix A, where the Response Spectrum Analysis is not performed.

 Sub Sspace(File1 As StreamWriter)

 '---

 ' Program to solve for the smallest eigenvalues and corresponding eigenvectors

 ' in the generalized eigenproblem using the subspace iteration method

 '

 ' written by K. J. Bathe: "Finite Element Procedures in Engineering Analysis"

 ' Prentice-Hall, 1982

 '

 ' revised and translated in vb.net by Paolo Varagnolo, 2020

 '

 ' Input variables

 '---

 ' GLOBK(NKGLO) = stiffness matrix in compacted form

 ' (global scope variable, already assembled)

 ' GLOBM(NMGLO) = mass matrix in compacted form

 ' (global scope variable, already assembled)

 ' MAXAD(NDOFT + 1) = vector containing the addresses of diagonal elements of

GLOBK()

 ' (global scope variable, already assembled)

 ' R(NDOFT, NC) = eigenvectors on solution exit

 ' EIGV(NC) = eigenvalues on solution exit

 ' TT(NDOFT) = working vector

 ' W(NDOFT) = working vector

 ' AR(NNC) = working vector storing projection of GLOBK

 ' BR(NNC) = working vector storing projection of GLOBM

 ' VEC(NC, NC) = working matrix

 ' D(NC) = working vector

 ' RTOLV(NC) = working vector

 ' BUP(NC) = working vector

 ' BLO(NC) = working vector

 ' BUPC(NC) = working vector

 '

 ' NKGLO = number of elements below skyline of GLOBK()

 ' (global scope variable, already assigned)

 ' NMGLO = number of elements below skyline of GLOBM()

 ' (global scope variable, already assigned)

 ' NDOFT = total number of degrees of freedom = order of GLOBK(), GLOBM()

 ' (global scope variable, already assigned)

 ' NC = number of iteration vectors used, usually set to MIN(2*NROOT,

NROOT + 8),

 ' cannot be larger then the number of mass degrees of freedom

 ' NNC = NC * (NC + 1) / 2 dimension of storage vectors AR, BR

 ' NROOT = number of required eigenvalues and eigenvectors

 ' (global scope variable, already assigned)

 ' RTOL = convergence tolerance on eigenvalues (1E-6 or smaller)

 ' (global scope variable, already assigned)

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 72

 ' NITEM = maximum number of subspace iterations permitted (usually set

to 16)

 ' the parameters NC and/or NITEM must be increased

 ' if a Then solutions has Not converged

 ' (global scope variable, already assigned)

 ' NSMAX = maximum number of sweeps in Jacobi iteration

 ' IFSS = flag for Sturm sequence check: = 0 --> no check; = 1 -->

check

 ' (global scope variable, already assigned)

 ' IFPR = flag for intermediate printing: = 0 --> no check; = 1 -->

check

 ' (global scope variable, already assigned)

 ' Dstif = scratch streamwriter to store stiffness matrix

 ' File1 = streamwriter for output file

 '---

 ' Output variables

 '---

 ' EIGV(NROOT) = eigenvalues

 ' R(NDOFT, NROOT) = eigenvectors

 '---

 Dim NC, MassDOF, NNC, ij, Iconv, NSCH, NSMAX, N1, NC1, ND, ISH, Nite, Nei, Icoun,

Idofn As Integer

 Dim itemp As Integer

 Dim i%, j%, l%, ii%

 Dim TOLJ, RT, MaxTol, ART, BRT, Dummy, Vnorm, Wnorm, Shift As Double

 Dim Text As String

 Dim ConvReached, Swapped As Boolean

 MassDOF = CalculateMassDOF()

 NC = Math.Min(2 * NROOT, NROOT + 8)

 NC = Math.Min(NC, MassDOF)

 NNC = NC * (NC + 1) / 2

 Dim R(NDOFT, NC), TT(NDOFT), W(NDOFT), EIGV(NC), D(NC), VEC(NC, NC), AR(NNC),

BR(NNC) As Double

 Dim RTOLV(NC), BUP(NC), BLO(NC), BUPC(NC) As Double

 TOLJ = 0.000000000001 'TOLERANCE FOR jACOBI ITERATION

 If NROOT > NDOFT Then

 Text = "The number of requested eigenvalues is greater then " + vbCrLf

 Text += "the number of degrees of freedom in the model." + vbCrLf

 Text += "Only " + NDOFT.ToString + " eigenvalues will be serched." + vbCrLf

 MsgBox(Text, vbExclamation, "Warning")

 File1.WriteLine(Text)

 NROOT = NDOFT

 End If

 If NROOT > MassDOF Then

 Text = "The number of requested eigenvalues is greater then " + vbCrLf

 Text += "the number of mass degrees of freedom." + vbCrLf

 Text += "Only " + MassDOF.ToString + " eigenvalues will be serched." + vbCrLf

 MsgBox(Text, vbExclamation, "Warning")

 File1.WriteLine(Text)

 NROOT = MassDOF

 End If

 If IFPR <> 0 Then

 Text = vbCrLf

 Text += "global stiffness matrix in compacted form " + vbCrLf

 For i% = 1 To NKGLO

 Text += String.Format("{0,15}", GLOBK(i%).ToString("0.00000000E+00")) +

vbCrLf

 Next i%

 File1.WriteLine(Text)

 Text = vbCrLf

 Text += "global mass matrix in compacted form " + vbCrLf

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 73

 For i% = 1 To NMGLO

 Text += String.Format("{0,15}", GLOBM(i%).ToString("0.00000000E+00")) +

vbCrLf

 Next i%

 File1.WriteLine(Text)

 End If

 'Initialization

 Iconv = 0

 NSCH = 0

 NSMAX = 12

 N1 = NC + 1

 NC1 = NC - 1

 Dim Dstif As System.IO.StreamWriter = Nothing

 Dim FileWork0 As String = myPath + "WORK0" 'open a file where will be saved the

stiffness global matrix

 Dstif = My.Computer.FileSystem.OpenTextFileWriter(FileWork0, True)

 'write global stiffness matrix

 For i% = 1 To NKGLO

 Dstif.WriteLine(GLOBK(i%))

 Next i%

 Dstif.Close()

 ReDim D(NC), R(NDOFT, NC) 'this set the arrays to zero

 'establish starting iteration vectors

 ND = Int(NDOFT / NC)

 If NMGLO <= NDOFT Then

 j% = 0

 For i% = 1 To NDOFT

 ii% = MAXAD(i%)

 R(i%, 1) = GLOBM(i%)

 If GLOBM(i%) > 0 Then j% += 1

 W(i%) = GLOBM(i%) / GLOBK(ii%)

 Next i%

 If NC > j% Then

 Text = "The number of iteration vectors must not exceed the number of mass

degrees of freedom." + vbCrLf

 MsgBox(Text, vbExclamation, "Warning")

 File1.WriteLine(Text)

 End

 End If

 Else

 For i% = 1 To NDOFT

 ii% = MAXAD(i%)

 R(i%, 1) = GLOBM(ii%)

 W(i%) = GLOBM(ii) / GLOBK(ii)

 Next i%

 End If

 l% = NDOFT - ND

 For j% = 2 To NC

 RT = 0

 For i% = 1 To l%

 If W(i%) >= RT Then

 RT = W(i%)

 ij = i%

 End If

 Next i%

 For i% = l% To NDOFT

 If W(i%) > RT Then

 RT = W(i%)

 ij = i%

 End If

 Next i%

 TT(j%) = ij

 W(ij) = 0.0

 l% -= ND

 R(ij, j%) = 1.0

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 74

 Next j%

 PrtString = "Degrees of freedom excited by unit starting iteration vectors" +

vbCrLf

 Call PrintArray_1_10_Int(PrtString, TT, 2, NC)

 File1.WriteLine(PrtString)

 'factorize matrix GLOBK() into (L)*(D)*(L(T))

 ISH = 0

 Call Decomp(ISH, File1)

 If Errore Then

 File1.Close() : Exit Sub

 End If

 'start of iteration loop

 Nite = 0

 ConvReached = False

 Do While Iconv = 0 'it is an infinite loop, Iconv remains = 0. The exit from the

loop occurs when ConvReached becomes true

 Nite += 1

 If IFPR <> 0 Then

 Text = vbCrLf

 Text += "Iteration number: " + String.Format("{0,4}",

Nite.ToString("###0")) + vbCrLf

 File1.WriteLine(Text)

 End If

 'calculate the projection of GLOBK and GLOBM

 ij = 0

 For j% = 1 To NC

 For k% = 1 To NDOFT

 TT(k%) = R(k%, j%)

 Next k%

 Call REDBAK(TT, File1)

 For i% = j% To NC

 ART = 0

 For k% = 1 To NDOFT

 ART += R(k%, i%) * TT(k%)

 Next k%

 ij += 1

 AR(ij) = ART

 Next i%

 For k% = 1 To NDOFT

 R(k%, j%) = TT(k%)

 Next k%

 Next j%

 If IFPR <> 0 Then

 PrtString = vbCrLf

 PrtString += "array TT() after REDBAK" + vbCrLf

 Call PrintArray_1_10_Real(PrtString, TT, 1, NDOFT)

 File1.WriteLine(PrtString)

 End If

 ij = 0

 For j% = 1 To NC

 Call MULT(TT, GLOBM, R, j%, NMGLO)

 For i% = j% To NC

 BRT = 0

 For k% = 1 To NDOFT

 BRT += R(k%, i%) * TT(k%)

 Next k%

 ij += 1

 BR(ij) = BRT

 Next i%

 If Not ConvReached Then

 For k% = 1 To NDOFT

 R(k%, j%) = TT(k%)

 Next k%

 End If

 Next j%

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 75

 'solve for eigensystem of subspace operators

 If IFPR <> 0 Then

 Call PrintProjections(AR, BR, NC, File1)

 End If

 Call Jacobi(AR, BR, VEC, EIGV, W, NC, NNC, TOLJ, NSMAX, IFPR, File1)

 If Errore Then

 FileClose() : Exit Sub

 End If

 If IFPR <> 0 Then

 Text = "AR and BR after Jacobi diagonalization"

 File1.WriteLine(Text)

 Call PrintProjections(AR, BR, NC, File1)

 End If

 'arrange eigenvalues in ascending order

 Swapped = True

 Do Until Swapped = False

 Swapped = False

 ii = 1

 For i% = 1 To NC1

 itemp = ii + N1 - i%

 If EIGV(i% + 1) < EIGV(i%) Then

 Swapped = True

 Dummy = EIGV(i% + 1)

 EIGV(i% + 1) = EIGV(i%)

 EIGV(i%) = Dummy

 Dummy = BR(itemp)

 BR(itemp) = BR(ii)

 BR(ii) = Dummy

 For k% = 1 To NC

 Dummy = VEC(k%, i% + 1)

 VEC(k%, i% + 1) = VEC(k%, i%)

 VEC(k%, i%) = Dummy

 Next k%

 End If

 ii = itemp

 Next i%

 Loop

 If IFPR <> 0 Then

 Text = "Eigenvalues of AR - Lambda * BR" + vbCrLf

 Call PrintArray_1_10_Real(Text, EIGV, 1, NC)

 File1.WriteLine(Text)

 End If

 'calculate GLOBM times approximate or final eigenvectors

 For i% = 1 To NDOFT

 For j% = 1 To NC

 TT(j%) = R(i%, j%)

 Next j%

 For k% = 1 To NC

 RT = 0

 For l% = 1 To NC

 RT += TT(l%) * VEC(l%, k%)

 Next l%

 R(i%, k%) = RT

 Next k%

 Next i%

 '---

 'this is the real exit from the iteration loop

 If ConvReached Then Exit Do

 '---

 'check for convergence of eigenvalues

 For i% = 1 To NC

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 76

 RTOLV(i%) = Math.Abs(EIGV(i%) - D(i%)) / EIGV(i%)

 Next i%

 If IFPR <> 0 Then

 Text = vbCrLf

 Text += "Relative tolerance reached on eigenvalues." + vbCrLf

 Call PrintArray_1_10_Real(Text, RTOLV, 1, NC)

 File1.WriteLine(Text)

 End If

 MaxTol = -9999

 For i% = 1 To NROOT

 If MaxTol < RTOLV(i%) Then MaxTol = RTOLV(i%)

 Next i%

 If MaxTol < RTOL Then

 'convergence reached

 Text = vbCrLf

 Text += "Convergence reached for tolerance = " + String.Format("{0,12}",

RTOL.ToString("0.00000E+00")) '+ vbCrLf

 File1.WriteLine(Text)

 ConvReached = True 'Iconv = 1

 Else

 If Nite >= NITEM Then

 'convergence not reached

 Text = vbCrLf

 Text += "No convergence in maximum number of iteratioons permitted."

+ vbCrLf

 Text += "Current iteration values will be accepted." + vbCrLf

 Text += "The Sturm sequence check is not performed." + vbCrLf

 File1.WriteLine(Text)

 ConvReached = True 'Iconv = 2

 IFSS = 0

 Else

 For i% = 1 To NC

 D(i%) = EIGV(i%)

 Next i%

 End If

 End If

 Loop 'end of iteration loop

 Text = vbCrLf

 Text += "The calculated eigenvalues are:" + vbCrLf

 Call PrintArray_1_10_Real(Text, EIGV, 1, NROOT)

 File1.WriteLine(Text)

 Text = ""

 Text += "The calculated eigenvectors are:" + vbCrLf

 For Iroot = 1 To NROOT

 Dim Dumm(NDOFT) As Double

 For Idofn = 1 To NDOFT

 Dumm(Idofn) = R(Idofn, Iroot)

 Next Idofn

 Call PrintArray_1_10_Real(Text, Dumm, 1, NDOFT)

 Next Iroot

 File1.WriteLine(Text)

 'calculate and print error norms

 'read global stiffness matrix

 Using sr As StreamReader = File.OpenText(FileWork0) 'stiffness global matrix

 For i% = 1 To NKGLO

 GLOBK(i%) = sr.ReadLine

 Next i%

 End Using

 For l% = 1 To NROOT

 RT = EIGV(l%)

 Call MULT(TT, GLOBK, R, l%, NKGLO)

 Vnorm = 0

 For i% = 1 To NDOFT

 Vnorm += TT(i%) * TT(i%)

 Next i%

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 77

 Call MULT(W, GLOBM, R, l%, NMGLO)

 Wnorm = 0

 For i% = 1 To NDOFT

 TT(i%) -= RT * W(i%)

 Wnorm += TT(i%) * TT(i%)

 Next i%

 Vnorm = Math.Sqrt(Vnorm)

 Wnorm = Math.Sqrt(Wnorm)

 D(l%) = Wnorm / Vnorm

 Next l%

 If IFPR > 0 Then

 Text = vbCrLf

 Text += "Print error norms on the eigenvalues" + vbCrLf

 Call PrintArray_1_10_Real(Text, D, 1, NROOT)

 File1.WriteLine(Text)

 End If

 'apply Sturm sequence check

 If IFSS <> 0 Then 'IFSS is the flag for Sturm sequence check

 Call SturmCheck(EIGV, RTOLV, BUP, BLO, BUPC, D, NC, Nei, RTOL, Shift, File1)

 If Errore Then

 File1.Close() : Exit Sub

 End If

 If IFPR > 0 Then

 Text = vbCrLf

 Text += "Check applied at shift: " + String.Format("{0,12}",

Shift.ToString("0.00000E+00")) '+ vbCrLf

 File1.WriteLine(Text)

 End If

 'shift matrix GLOBK

 'read global stiffness matrix

 Using sr As StreamReader = File.OpenText(FileWork0) 'stiffness global matrix

file

 For i% = 1 To NKGLO

 GLOBK(i%) = sr.ReadLine

 Next i%

 End Using

 If NMGLO <= NDOFT Then

 For i% = 1 To NDOFT

 ii = MAXAD(i%)

 GLOBK(ii) -= GLOBM(i%) * Shift

 Next i%

 Else

 For i% = 1 To NKGLO

 GLOBK(i%) -= GLOBM(i%) * Shift

 Next i%

 End If

 'factorize shifted matrix

 ISH = 1

 Call Decomp(ISH, File1)

 If Errore Then

 File1.Close() : Exit Sub

 End If

 'count number of negative diagonal elements

 NSCH = 0

 For i% = 1 To NDOFT

 ii = MAXAD(i%)

 If GLOBK(ii) < 0 Then NSCH += 1

 Next i%

 If NSCH = Nei Then

 Text = ""

 Text += "We found the lowest: " + String.Format("{0,4}",

NSCH.ToString("###0")) + " eigenvalues "

 Text += "(" + NROOT.ToString + " had to be found)" + vbCrLf

 File1.WriteLine(Text)

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 78

 Else

 Text = ""

 Text += "There are: " + String.Format("{0,4}", (NSCH -

Nei).ToString("###0")) + " eigenvalues missing" + vbCrLf

 File1.WriteLine(Text)

 End If

 End If 'Sturm sequence check

 'Write FREQUENCIES (ADDED BY PV)

 If IFSS = 0 Then

 Text = vbCrLf + " PRINT OF FREQUENCIES" + vbCrLf

 Else

 Text = " PRINT OF FREQUENCIES" + vbCrLf

 End If

 Text += vbCrLf

 Text += " MODE CIRCULAR " + vbCrLf

 Text += " NUMBER FREQUENCY FREQUENCY PERIOD" + vbCrLf

 Text += " (RAD/SEC) (CYCLES/SEC) (SEC)" + vbCrLf

 Text += "---"

 File1.WriteLine(Text)

 ReDim CircFreq(NROOT), Frequency(NROOT), Period(NROOT)

 Dim TPI As Double = 8 * Math.Atan(1)

 For i% = 1 To NROOT

 CircFreq(i%) = Math.Sqrt(EIGV(i%)) 'circular frequency

 Frequency(i%) = CircFreq(i%) / TPI 'frequency

 Period(i%) = TPI / CircFreq(i%) 'period

 Text = String.Format("{0,5}", i%.ToString("####0")) + " "

 Text += String.Format("{0,17}", CircFreq(i%).ToString("E8"))

 Text += String.Format("{0,17}", Frequency(i%).ToString("E8"))

 Text += String.Format("{0,17}", Period(i%).ToString("E8"))

 File1.WriteLine(Text)

 Next i%

 CurCase = Ncase + NCOMB

 Text = vbCrLf

 Text += "Nodes displacements / rotations" + vbCrLf

 Text += "-------------------------------" + vbCrLf

 Text += " Node eigen" + vbCrLf

 Text += " number vector X-displac. Y-displac. Z-displac. XX-rotation YY-

rotation ZZ-rotation" '+ vbCrLf

 File1.WriteLine(Text)

 For Iroot = 1 To NROOT

 CurCase += 1

 Icoun = 0

 For Ipoin = 1 To Npoin

 For Idofn = 1 To NDOFN

 If IDDOF(Idofn, Ipoin) > 0 Then

 Icoun += 1

 Displ(CurCase, Ipoin, Idofn) = R(Icoun, Iroot)

 End If

 Next Idofn

 Next Ipoin

 Next Iroot

 'print of eigenvalues

 For Ipoin = 1 To Npoin

 CurCase = Ncase + NCOMB

 Text = String.Format("{0,6}", Ipoin.ToString("#####0"))

 For Iroot = 1 To NROOT

 CurCase += 1

 If Iroot > 1 Then Text = " "

 Text += String.Format("{0,8}", Iroot.ToString("#####0")) + " "

 For Idofn = 1 To NDOFN

 Text += String.Format("{0,13}", Displ(CurCase, Ipoin,

Idofn).ToString("0.00000E+00"))

 Next Idofn

 File1.WriteLine(Text)

 Next Iroot

 Next Ipoin

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 79

 Call ParticipantMassesCalculation(R) 'calculate participant masses for seismic

analysis

 Call WriteParticipantMasses(File1)

 If Ifspe > 0 Then

 Call SpectralResponse(R) 'calculate Modal Response Spectrum analysis

 Call WriteSpectrumDisp(File1)

 End If

 If Dir(myPath + "WORK0") <> "" Then Kill(myPath & "WORK0")

 End Sub

 Sub WriteParticipantMasses(File1 As StreamWriter)

 Dim Text As String

 Dim ParticTotMass(NDOFN) As Single

 'PartFact(Iroot, Icoun)

 Text = vbCrLf

 Text += "Modal participation factors" + vbCrLf

 Text += "--" + vbCrLf

 Text += " Mode X direction Y direction Z direction" + vbCrLf

 Text += "--"

 File1.WriteLine(Text)

 For Imode = 1 To NROOT

 Text = String.Format("{0,5}", Imode.ToString("####0"))

 For Idime = 1 To NDIME

 Text += String.Format("{0,12}", PartFact(Imode,

Idime).ToString("0.000000"))

 Next Idime

 File1.WriteLine(Text)

 Next Imode

 File1.WriteLine()

 Text = ""

 Text += "Modal participating mass ratio (p.m.r.)" + vbCrLf

 Text += "--" + vbCrLf

 Text += " Mode p.m.r. X p.m.r. Y p.m.r. Z" + vbCrLf

 Text += "--"

 File1.WriteLine(Text)

 For Imode = 1 To NROOT

 Text = String.Format("{0,5}", Imode.ToString("####0"))

 For Idofn = 1 To NDIME

 ParticTotMass(Idofn) += PartMas(Imode, Idofn)

 Text += String.Format("{0,12}", PartMas(Imode,

Idofn).ToString("0.000000"))

 Next Idofn

 File1.WriteLine(Text)

 Next Imode

 Text = "--" + vbCrLf

 Text += " Sum"

 For Idofn = 1 To NDIME

 Text += String.Format("{0,12}", ParticTotMass(Idofn).ToString("0.000000"))

 Next Idofn

 File1.WriteLine(Text)

 File1.WriteLine()

 Text = ""

 If ParticTotMass(1) < 0.85 Then

 Text += "Warning! participating masses in X direction < 85%. §7.3.3.1

prescriptions not observed." + vbCrLf

 Else

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 80

 Text += "Participating masses in X direction >= 85%, as prescribed in NTC 2018

§7.3.3.1." + vbCrLf

 End If

 File1.WriteLine(Text)

 Text = ""

 If ParticTotMass(2) < 0.85 Then

 Text += "Warning! participating masses in Y direction < 85%. §7.3.3.1

prescriptions not observed." + vbCrLf

 Else

 Text += "Participating masses in Y direction >= 85%, as prescribed in NTC 2018

§7.3.3.1." + vbCrLf

 End If

 File1.WriteLine(Text)

 End Sub

 Sub WriteParticipantMasses(File1 As StreamWriter)

 Dim Text As String

 Dim ParticTotMass(NDOFN) As Single

 'PartFact(Iroot, Icoun)

 Text = vbCrLf

 Text += "Modal participation factors" + vbCrLf

 Text += "--" + vbCrLf

 Text += " Mode X direction Y direction Z direction" + vbCrLf

 Text += "--"

 File1.WriteLine(Text)

 For Imode = 1 To NROOT

 Text = String.Format("{0,5}", Imode.ToString("####0"))

 For Idime = 1 To NDIME

 Text += String.Format("{0,12}", PartFact(Imode,

Idime).ToString("0.000000"))

 Next Idime

 File1.WriteLine(Text)

 Next Imode

 File1.WriteLine()

 Text = ""

 Text += "Modal participating mass ratio (p.m.r.)" + vbCrLf

 Text += "--" + vbCrLf

 Text += " Mode p.m.r. X p.m.r. Y p.m.r. Z" + vbCrLf

 Text += "--"

 File1.WriteLine(Text)

 For Imode = 1 To NROOT

 Text = String.Format("{0,5}", Imode.ToString("####0"))

 For Idofn = 1 To NDIME

 ParticTotMass(Idofn) += PartMas(Imode, Idofn)

 Text += String.Format("{0,12}", PartMas(Imode,

Idofn).ToString("0.000000"))

 Next Idofn

 File1.WriteLine(Text)

 Next Imode

 Text = "--" + vbCrLf

 Text += " Sum"

 For Idofn = 1 To NDIME

 Text += String.Format("{0,12}", ParticTotMass(Idofn).ToString("0.000000"))

 Next Idofn

 File1.WriteLine(Text)

 File1.WriteLine()

 Text = ""

 If ParticTotMass(1) < 0.85 Then

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 81

 Text += "Warning! participating masses in X direction < 85%. §7.3.3.1

prescriptions not observed." + vbCrLf

 Else

 Text += "Participating masses in X direction >= 85%, as prescribed in NTC 2018

§7.3.3.1." + vbCrLf

 End If

 File1.WriteLine(Text)

 Text = ""

 If ParticTotMass(2) < 0.85 Then

 Text += "Warning! participating masses in Y direction < 85%. §7.3.3.1

prescriptions not observed." + vbCrLf

 Else

 Text += "Participating masses in Y direction >= 85%, as prescribed in NTC 2018

§7.3.3.1." + vbCrLf

 End If

 File1.WriteLine(Text)

 End Sub

 Sub WriteSeismicForces(File1 As StreamWriter)

 Dim Text As String

 Text = vbCrLf

 Text += "===" + vbCrLf

 Text += " RESPONSE SPECTRUM ANALYSIS" + vbCrLf

 Text += " (Forces Method)" + vbCrLf

 Text += "===" + vbCrLf

 File1.WriteLine(Text)

 Text = " Mode Period Spectral acceleration" + vbCrLf

 Text += " no. (s) m/s2" + vbCrLf

 Text += "---" + vbCrLf

 For Imode = 1 To NROOT

 Text += String.Format("{0,7}", Imode.ToString("####0")) + " "

 Text += String.Format("{0,11}", Period(Imode).ToString("0.0000E+00")) + "

"

 Text += String.Format("{0,11}", ModalAcc(Imode).ToString("0.0000E+00")) +

vbCrLf

 Next Imode

 File1.WriteLine(Text)

 'write C.Q.C. and S.R.S.S. forces

 Text = "combinations of seismic forces" + vbCrLf

 'Text += "--" +

vbCrLf

 'Text += " Node | C.Q.C. Force | S.R.S.S. Force |" +

vbCrLf

 'Text += " | Fx Fy | Fx Fy |" +

vbCrLf

 'Text += "--" +

vbCrLf

 Text += "---------------------------------------" + vbCrLf

 Text += " Node | C.Q.C. Force |" + vbCrLf

 Text += " | Fx Fy |" + vbCrLf

 Text += "---------------------------------------" + vbCrLf

 For Ipoin = 1 To Npoin

 Text += String.Format("{0,8}", Ipoin.ToString("####0")) + " "

 Text += String.Format("{0,11}", SeismicForceCQC(Ipoin,

1).ToString("0.0000E+00")) + " "

 Text += String.Format("{0,11}", SeismicForceCQC(Ipoin,

2).ToString("0.0000E+00")) + " " + vbCrLf

 'Text += String.Format("{0,11}", SeismicForceSRSS(Ipoin,

1).ToString("0.0000E+00")) + " "

 'Text += String.Format("{0,11}", SeismicForceSRSS(Ipoin,

2).ToString("0.0000E+00")) + vbCrLf

 Next Ipoin

 'Text += "--" +

vbCrLf

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 82

 Text += "---------------------------------------" + vbCrLf

 Text += "base shear "

 Text += String.Format("{0,11}", ShearForcesCQC(1, 1).ToString("0.0000E+00")) + "

" 'ShearForcesCQC(Ipoin, Idime)

 Text += String.Format("{0,11}", ShearForcesCQC(1, 2).ToString("0.0000E+00")) + "

" + vbCrLf

 'Text += String.Format("{0,11}", ShearForcesSRSS(1, 1).ToString("0.0000E+00")) +

" " 'ShearForcesSRSS(Ipoin, Idime)

 'Text += String.Format("{0,11}", ShearForcesSRSS(1, 2).ToString("0.0000E+00")) +

vbCrLf

 File1.WriteLine(Text)

 End Sub

 Function ElemLen(Inod1 As Integer, Inod2 As Integer) As Single

 Dim dx, dy, dz, XYlen As Single

 ElemLen = 0

 dx = Xcoor(Inod2) - Xcoor(Inod1)

 dy = Ycoor(Inod2) - Ycoor(Inod1)

 dz = Zcoor(Inod2) - Zcoor(Inod1)

 XYlen = Math.Sqrt(dx ^ 2 + dy ^ 2)

 ElemLen = Math.Sqrt(XYlen ^ 2 + dz ^ 2)

 End Function

 Sub WriteSpectrumDisp(File1 As StreamWriter)

 Dim Text, Text1, Text2 As String

 Call WriteSpectrum(File1)

 Text = vbCrLf : Text += vbCrLf

 Text += "===" + vbCrLf

 Text += " RESPONSE SPECTRUM ANALYSIS" + vbCrLf

 Text += " (Displacements Method)" + vbCrLf

 Text += "===" '+ vbCrLf

 File1.WriteLine(Text)

 'print displacements of the simple oscillator, in spectrum response

 Text = vbCrLf

 Text += "Nodes displacements / rotations" + vbCrLf

 Text += "-------------------------------" + vbCrLf

 Text += " Node eigen" + vbCrLf

 Text += " number vector X-displac. Y-displac. Z-displac. XX-rotation YY-

rotation ZZ-rotation" '+ vbCrLf

 File1.WriteLine(Text)

 For Ipoin = 1 To Npoin

 Text = String.Format("{0,6}", Ipoin.ToString("#####0"))

 For Iroot = 1 To NROOT

 If Iroot > 1 Then Text = " "

 Text += String.Format("{0,8}", Iroot.ToString("#####0")) + " "

 For Idofn = 1 To NDOFN

 Text += String.Format("{0,13}", SpecDisp(Iroot, Ipoin,

Idofn).ToString("0.00000E+00"))

 Next Idofn

 File1.WriteLine(Text)

 Next Iroot

 Next Ipoin

 If IfCQC Then

 Text1 = "Complete Quadratic Combinations (C.Q.C.)"

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 83

 Text2 = "C.Q.C."

 Else

 Text1 = "Square Root of Sum of Squares combinations (S.R.S.S.)"

 Text2 = "S.R.S.S."

 End If

 Text = vbCrLf : Text += vbCrLf

 Text += "===" + vbCrLf

 Text += " COMBINATIONS OF RESPONSE SPECTRUM RESULTS" + vbCrLf

 Text += "with " + Text1 + vbCrLf

 Text += "===" '+ vbCrLf

 File1.WriteLine(Text)

 Text = vbCrLf

 Text += "*** " + Text2 + " D I S P L A C E M E N T S ***" + vbCrLf

 Text += vbCrLf

 Text += " NODE X-displ. Y-displ. Z-displ. XX-rotat. YY-

rotat. ZZ-rotat."

 File1.WriteLine(Text)

 For Ipoin = 1 To Npoin

 Text = String.Format("{0,5}", Ipoin.ToString("####0")) + " "

 For Idofn = 1 To NDOFN

 Text += String.Format("{0,15}", Displ(0, Ipoin,

Idofn).ToString("0.0000E+00"))

 Next Idofn

 File1.WriteLine(Text)

 Next Ipoin

 End Sub

 Function ModalAccelerationCalc(Imode As Integer)

 Dim DeltaX, Pend As Single

 ModalAccelerationCalc = Spectrum(1, 2) * Gaccel

 For Ipoin = 2 To NpoiSpec

 If Spectrum(Ipoin, 1) > Period(Imode) Then

 'interpolate the acceleration

 DeltaX = Period(Imode) - Spectrum(Ipoin - 1, 1)

 Pend = (Spectrum(Ipoin, 2) - Spectrum(Ipoin - 1, 2)) / (Spectrum(Ipoin,

1) - Spectrum(Ipoin - 1, 1))

 ModalAccelerationCalc = (Spectrum(Ipoin - 1, 2) + Pend * DeltaX) * Gaccel

 Exit Function

 End If

 Next Ipoin

 End Function

 Sub WriteSpectrum(File1 As StreamWriter)

 Dim Text1 As String

 Dim Nrows, Icoun As Integer

 Nrows = Int(NpoiSpec / 5)

 Text1 = "Response Design Spectrum (acceleration vs. period)" + vbCrLf

 Text1 += "Elastic accelerations are divided by the behaviour Factor (q = "

 Text1 += String.Format("{0,4}", BehFact.ToString("0.00")) + ")" + vbCrLf

 Text1 += "--

--------------------------------------" + vbCrLf

 Text1 += " period ag/g period ag/g period ag/g

period ag/g period ag/g " + vbCrLf

 Text1 += "--

--------------------------------------" + vbCrLf

 Icoun = 0

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 84

 For Ipoin = 1 To Nrows

 For Icoup = 1 To 5

 Icoun += 1

 Text1 += String.Format("{0,11}", Spectrum(Icoun,

1).ToString("0.0000E+00"))

 Text1 += String.Format("{0,11}", Spectrum(Icoun,

2).ToString("0.0000E+00"))

 Next Icoup

 Text1 += vbCrLf

 Next Ipoin

 For Icou1 = Icoun + 1 To NpoiSpec

 Text1 += String.Format("{0,11}", Spectrum(Icoun, 1).ToString("0.0000E+00"))

 Text1 += String.Format("{0,11}", Spectrum(Icoun, 2).ToString("0.0000E+00"))

 Next Icou1

 Text1 += vbCrLf

 File1.WriteLine(Text1)

 End Sub

 Sub SeismicForcesCalculationCQC()

 'calculation of seismic forces with Forces Method

 Dim Disp As Double

 Dim SeismicForce(NROOT, Npoin, NDIME), ShearForces(NROOT, Npoin, NDIME),

BaseShearForce(NROOT, NDIME) As Double

 ReDim ModalAcc(NROOT)

 ReDim SeismicForceCQC(Npoin, NDIME)

 ReDim ShearForcesCQC(Npoin, NDIME)

 For Imode = 1 To NROOT

 ModalAcc(Imode) = ModalAccelerationCalc(Imode)

 For Ipoin = 1 To Npoin

 For Idime = 1 To NDIME

 Disp = Displ(Ncase + NCOMB + Imode, Ipoin, Idime)

 SeismicForce(Imode, Ipoin, Idime) = NodalMass(Ipoin) * Disp *

PartFact(Imode, Idime) * ModalAcc(Imode)

 BaseShearForce(Imode, Idime) += SeismicForce(Imode, Ipoin, Idime)

 Next Idime

 Next Ipoin

 Next Imode

 'transform seismic forces in storey shears

 For Imode = 1 To NROOT

 For Idime = 1 To NDIME

 ShearForces(Imode, Npoin, Idime) = SeismicForce(Imode, Npoin, Idime)

 For Ipoin = Npoin - 1 To 1 Step -1

 ShearForces(Imode, Ipoin, Idime) = ShearForces(Imode, Ipoin + 1,

Idime) + SeismicForce(Imode, Ipoin, Idime)

 Next Ipoin

 Next Idime

 Next Imode

 'complete quadratic combinations C.Q.C. of shear forces (D.M. 14.01.2018)

 For Jmode = 1 To NROOT

 For Imode = 1 To NROOT

 For Ipoin = 1 To Npoin

 ShearForcesCQC(Ipoin, 1) += Roij(Imode, Jmode) * ShearForces(Imode,

Ipoin, 1) * ShearForces(Jmode, Ipoin, 1)

 ShearForcesCQC(Ipoin, 2) += Roij(Imode, Jmode) * ShearForces(Imode,

Ipoin, 2) * ShearForces(Jmode, Ipoin, 2)

 Next Ipoin

 Next Imode

 Next Jmode

 For Ipoin = 1 To Npoin

 ShearForcesCQC(Ipoin, 1) = Math.Sqrt(ShearForcesCQC(Ipoin, 1))

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 85

 ShearForcesCQC(Ipoin, 2) = Math.Sqrt(ShearForcesCQC(Ipoin, 2))

 Next Ipoin

 'and now, finally, calculate storey forces as differences of storey shears

 For Idime = 1 To NDIME

 SeismicForceCQC(Npoin, Idime) = ShearForcesCQC(Npoin, Idime)

 Next Idime

 For Ipoin = Npoin - 1 To 1 Step -1

 For Idime = 1 To NDIME

 SeismicForceCQC(Ipoin, Idime) = ShearForcesCQC(Ipoin, Idime) -

ShearForcesCQC(Ipoin + 1, Idime)

 Next Idime

 Next Ipoin

 End Sub

 Sub STRBER(Icase As Integer, Nele1 As Integer, Nele2 As Integer, FileWork3 As String)

 'STRESS CALCULATION FOR BEAM OR WINKLER ELEMENTS

 'in the case of Response Spectrum Analysis

 Dim Index, Idofn, Idof1, Ldofn As Integer

 Dim GlobDisp(), LocDisp(), LocLoa(), Force(,), Sum, Stres(NEVAB) As Double

 Dim Toler As Double = 0.0000000001

 Using sr As StreamReader = File.OpenText(FileWork3) 'stiffness LOCAL matrices file

 ' *** LOOP OVER ELEMENTS

 For Ielem = Nele1 To Nele2

 'read stiffness matrix

 For Icolu = 1 To 78

 Stiff(Icolu) = sr.ReadLine

 Next Icolu

 ReDim Force(NEVAB, NROOT)

 For Iroot = 1 To NROOT

 'calculate displacements LocDisp() and NOT equivalent forces LocLoa()

in local coordinates

 'transformation T matrices are calculated only once after reading data

 ReDim GlobDisp(NEVAB), LocDisp(NEVAB), LocLoa(NEVAB)

 For Idofn = 1 To NDOFN

 Idof1 = Idofn + NDOFN

 GlobDisp(Idofn) = SpecDisp(Iroot, Inc1(Ielem), Idofn)

 GlobDisp(Idof1) = SpecDisp(Iroot, Inc2(Ielem), Idofn)

 Next Idofn

 For Idofn = 1 To NDOFN

 Idof1 = Idofn + NDOFN

 For Jdofn = 1 To NDOFN

 Ldofn = Jdofn + NDOFN

 LocDisp(Idofn) += Tmat(Ielem, Idofn, Jdofn) * GlobDisp(Jdofn)

 LocDisp(Idof1) += Tmat(Ielem, Idofn, Jdofn) * GlobDisp(Ldofn)

 Next Jdofn

 Next Idofn

 'calculate forces in local system: [K] u = f

 For Ievab = 1 To NEVAB

 Sum = 0

 For Jevab = 1 To NEVAB

 Index = Kpos(Ievab, Jevab)

 Sum += Stiff(Index) * LocDisp(Jevab)

 Next Jevab

 Force(Ievab, Iroot) = Sum

 Next Ievab

 Next Iroot

3-D Beam Finite Element Programming - A Practical Guide: Part 2 – Dynamic Modal Analysis 86

 ReDim Stres(NEVAB)

 For Ievab = 1 To NEVAB

 If IfCQC Then

 'Complete Quadratic Combinations (C.Q.C.) of displacements

 For Jmode = 1 To NROOT

 For Imode = 1 To NROOT

 Stres(Ievab) += Roij(Imode, Jmode) * Force(Ievab, Imode)

* Force(Ievab, Jmode)

 'Stres(Ievab) += Roij(Imode, Jmode) *

Math.Abs(Force(Ievab, Imode)) * Math.Abs(Force(Ievab, Jmode))

 Next Imode

 Next Jmode

 Else

 'Square Root of Sum of Squares (S.R.S.S.) combinations of

displacements

 For Iroot = 1 To NROOT

 Stres(Ievab) += Force(Ievab, Iroot) ^ 2

 Next Iroot

 End If

 Stres(Ievab) = Math.Sqrt(Stres(Ievab))

 Next Ievab

 For Ievab = 1 To NEVAB

 If Math.Abs(Stres(Ievab)) < Toler Then Stres(Ievab) = 0.0

 Next Ievab

 'store values in Stre1(,,), Stre2(,,) matrices

 For Idofn = 1 To NDOFN

 Stre1(Icase, Ielem, Idofn) = -Stres(Idofn)

 Stre2(Icase, Ielem, Idofn) = Stres(Idofn + NDOFN)

 Next Idofn

 Next Ielem

 End Using

 End Sub

 Sub RoijCalc()

 'calculation of C.Q.C. Roij correlation coefficients

 Dim Betaij As Double

 ReDim Roij(NROOT, NROOT)

 For Imode = 1 To NROOT

 For Jmode = 1 To NROOT

 'Betaij = Period(Jmode) / Period(Imode)

 Betaij = CircFreq(Imode) / CircFreq(Jmode)

 Roij(Imode, Jmode) = 8 * DampCsi ^ 2 * Betaij ^ 1.5

 Roij(Imode, Jmode) /= (1 + Betaij)

 Roij(Imode, Jmode) /= ((1 - Betaij) ^ 2 + 4 * DampCsi ^ 2 * Betaij)

 Next Jmode

 Next Imode

 End Sub

