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1 Introduction 

The program MdFem has been presented in [9] for the basic static analysis, and in [10] for the modal 

response spectrum analysis. In this paper some advanced features in static analysis will be 

presented. 

The aim of this paper is to describe some techniques useful in the analysis of frame structures. For 

each new feature examples will be presented, along with the related code. As in the previous works 

cited, we want to focus on the programmer's point of view. 

The theoretical and mathematical framework will therefore not be addressed, since it is already 

widely available in many books and papers. 

The MdFem program implements a 3-D Beam element. It is a straight, 2 nodes element: at each 

node there are 3 translational and 3 rotational degrees of freedom (dof). This element is capable of 

transmitting axial and shear forces, along with torque and bending moments. 

The new features described in this paper are: 

1) spring elements; 

2) release of moments at the element ends; 

3) elements capable of only tensile stresses; 

4) elements capable of only compressive stresses (gap elements); 

5) beams on elastic soil. 

Several validation examples will be presented in this paper, comparing MdFem results with the 

results of Sap4 (in the version of 1994 by Bruce F. Maison, based on the original 1973 Sap4 

developed by K. J. Bathe, E. L. Wilson, F. E. Peterson from the University of California, Berkley) and 

SismiCad (a widly used commercial program by Concrete S.r.L. – Padova – Italy). 

 

2 Spring elements 

The springs can be defined for each of the 6 degrees of freedom (dof) of a node. In this paper they 

are supposed to be elastic. The dof where the spring is applied must not be restrained. 

The translational springs behave according to the Hooke’s law and their values are expressed as the 

ratio of a force and the displacement in the direction of the force. The intensity of the translational 

springs in the x, y, z global directions are therefore: 

Kx = Fx / ux 

Ky = Fy / uy 

Kz = Fz / uz 

The concept can be extended to the rotational dof, where the intensity of the springs is defined as 

the ratio of a moment and the rotation about the same axis.  

Kxx = Mxx / x 

Kyy = Myy / y 

Kzz = Mzz / z 

In the MdFem program the spring values are stored in the array SPRIN(Npoin, Ndofn), where Npoin 

is the number of nodes in the model and Ndofn is the number of degrees of freedom (6) at each 

node. 

The effect of the springs is considered by simply adding, in the global stiffness matrix, their stiffness 

to the degree of freedom on which they act. From [9] we know that the degrees of freedom of the 

structure are stored in the array IDDOF(Ndofn, Npoin), while the addresses of the diagonal 

elements of the global stiffness matrix are stored in the array MAXAD(Ndoft), where Ndoft is the 

total number of dof in the structure. 
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The global stiffness matrix of the structure [𝐾𝐺] is stored in compact form in the array 

GLOBK(Index), with the active columns scheme as described in [1], [9].  

2.1  Example 2.1 
Consider the structure in the next figure, with 2 elements and 3 nodes. Node 1 is fixed and has no 

degrees of freedom, while at nodes 2, 3 there are 6 + 6 degrees od freedom, 3 displacements and 

3 rotations each. After some preliminary elaborations, the array IDDOF(Ndofn, Npoin) will contain 

the values listed below. 

 
 

At node 2 there are the 6 dof (ux,2, uy,2, uz,2, x,2, y,2, z,2), and at node 3 there are the 6 dof (ux,3, uy,3, 

uz,3, x,3, y,3, z,3). 

The following figure shows the MAXAD() array referred to the previous figure, and the numbering 

of the element indices in the global stiffness matrix GLOBK(). 

Let’s add a spring with intensity Kx acting in the global x direction, as shown in the next figure. The 

value Kx is stored in the array SPRIN() at the position corresponding to node 3 and dof 1 (ux): 

SPRIN(3, 1) = Kx. The array IDDOF(1, 3) indicates that the dof corresponding to dof 1 and node 3 is 

number 7. The corresponding value of MAXAD(7) = 22 and therefore the value Kx will be added to 

GLOBK(22): 

GLOBK(22) = GLOBK(22) + Kx 
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The subroutine used in the program for the assemblage of the springs’ stiffnesses is presented 

below. 

 

    Sub ADDSPR() 
        Dim Ldofn, Lkglo As Long 
 
        For Ipoin = 1 To Npoin 
            For Idofn = 1 To NDOFN 
                Ldofn = IDDOF(Idofn, Ipoin) 
                Lkglo = MAXAD(Ldofn) 
                GLOBK(Lkglo) = GLOBK(Lkglo) + SPRIN(Ipoin, Idofn) 
            Next Idofn 
        Next Ipoin 
 
    End Sub 

 

2.2 Validation example 2.2 
In order to check all the possible spring types and directions, the model shown in the next figures 

has been calculated. The adopted units are kN, m, rad respectively for forces, lengths and angles. 

Materials are supposed to be weightless. 

 

 

C25/30 concrete - section 0.6x0.3 
A = 0.18 m2 
J33 = 0.00135 m4 
J22 = 0.0054 m4 
Jt = 0.003699 m4 
E = 31447161 kN/m2 
 = 0.1 

 

In the following figures the springs and the loads are represented. Their values are listed in the next 

tables. 
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Node 

Kx 
(kN/m) 

Ky 
(kN/m) 

Kz 
(kN/m) 

Kxx 
(kNm/rad) 

Kyy 
(kNm/rad) 

Kzz 
(kNm/rad) 

2 0 0 50000 0 0 0 
4 50000 0 0 0 0 0 
6 0 50000 0 0 0 0 
10 0 0 0 0 15000 0 
12 0 0 0 0 0 15000 
14 0 0 0 15000 0 0 

 

 
Elements 

qx 
(kN/m) 

qy 
(kN/m) 

qz 
(kN/m) 

1, 2, 7, 8 0 0 30 
3, 4, 9, 10 30 0 0 
5, 6, 11, 12 0 30 0 

 



3-D Beam Finite Element Programming - A Practical Guide: Part 3 –Advanced features  7 
 

 

In the next three figures, some of the main results are highlighted: these results are compared with 

those obtained with the program SismiCad, for the validation of MdFem. 
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The geometry, the spring values and the load values are organized in order to obtain the same 

results in the three global directions. The comparison of the results follows: signs will be omitted in 

the tables. 

 

Displacements 
(m) 

SismiCad MdFem error 

Uz,2=Ux,4=Uy,6 0.001827 0.0018204 0.36% 

Uz,9=Ux,11=Uy,13 0.012073 0.011954 0.99% 

 

Shear Forces 
(kN) 

SismiCad MdFem error 

R22,i=R34,i=R26,i 45.67 45.51 0.35% 

R22,j=R34,j=R26,j 74.33 74.49 0.22% 

R28,i=R310,i=R212,i 17.54 17.578 0.22% 

R28,j=R310,j=R212,j 102.46 102.42 0.04% 

 

 

Bending Moments 
(kNm) 

SismiCad MdFem error 

M32,i= M24,i= M36,i 11.342 11.019 2.8% 

M32,j= M24,j= M36,j 68.658 68.981 0.47% 

M38,i= M210,i= M312,i 103.4759 103.440 0.03% 

M38,j= M210,j= M312,j 66.3571 66.249 0.16% 
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3 Moments release at the end of the elements 

A release in moment is the same as a release in rotation: the only way to ensure rotation continuity 

from one element to another is to transfer moment between them. Hence a moment end release 

implies different rotations at the end of concurring elements. 

The approach followed by MdFem program to release the moments at the end of the elements, is 

to add a new dof where required. This technique allows the calculation of the released rotations at 

the ends of the elements, where the moments are zero.  

The possible releases could be technically in any degree of freedom, but the choice has been made 

to allow only global rotation releases. Some kind of translational releases is allowed by means of 

elements capable of only tensile or only compression forces: these are described further. 

Another approach is not to assemble the stiffnesses related to the released rotations, referred to 

the local coordinate system. This is the technique used by SAP4, however it does not allow to 

calculate the rotations of the released ends. On the other hand, this technique deals with rotations 

and moments referred to the local axes, that could be very useful for elements not parallel to the 

global reference system. 

In the MdFem program the released dof are stored in the array Releases(Nelem, NEVAB=2xNdofn), 

where Nelem is the number of elements in the model and Ndofn is the number of degrees of 

freedom at each node (6 degrees of freedom). 

Since only rotational releases are allowed, as a choice, the Releases() array will refer only to x,i, 

y,i, z,i, x,j, y,j, z,j. The corresponding indexes will be therefore: Releases(Ielem, 1÷3) for the 

three rotations of the first node, and Releases(Ielem, 10÷12) for the three rotations of the second 

node. 

The degrees of freedom of the structure are associated to the elements via the array 

LMDOF(NEVAB, Nelem), which is constructed with the indications contained in the array IDDOF() 

introduced in the previous paragraph and in [9]. To insert a free rotation at the end of an element, 

it is sufficient to define a new dof, in addition to those already identified by the geometry and the 

constraints of the structure. 

Technically the problem is solved like this, but in practice it is also necessary to check that not all 

the rotations of the elements that converge to a node are released: if it happens, there is a d.o.f. 

with no stiffness at the node, and the structure is unstable. This check is obtained with the 

subroutine Check_Release() shown later. 

Another precaution is also needed: it is necessary to store the rotations of the free elements in an 

array, in order to output the calculation results, and also to allow the correct drawing of the 

deformed structure. The extra rotations are stored in the array ElemRotat(Ncase, Nelem, 1÷6), 

where Ncase is the number of load conditions + load combinations, Nelem is the number of 

elements, and the third dimension refers to the six rotations x,i, y,i, z,i, x,j, y,j, z,j. 

 

3.1 Example 3.1 
Consider the structure in the next figure, with 3 elements and 4 nodes. There are 6 dof at node no. 

3 and 6 dof at node no. 4. The LMDOF() array contains the indexes of the degrees of freedom at the 

ends of the elements, and the colors highlight which dof are common between the elements. 
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By inserting a y hinge at the first (left) end of element no. 3, as shown in the next figure, an extra 

dof is created, associated to LMDOF(5, 3). Therefore the rotations of the elements converging to 

node no. 3 are no more the same. 

 

 
 

The subroutine used in the program to add the dof corresponding to the released rotations is 

presented below. 

 

Sub MOME_RELEASE() 
 
    ReDim LMDOF(NEVAB, Nelem + Ngaps) 
 
    'Add new d.o.f. if there is some release, and set their number in LMDOF array 
    'LMDOF will be completed with normally restrained d.o.f. in INPELE subroutine 
 
    For Ielem = 1 To Nelem 
        If Releases(Ielem, 4) = 1 Then 
            NDOFT += 1 
            LMDOF(4, Ielem) = NDOFT   '4th dof is xxi-rotation 
        End If 
        If Releases(Ielem, 5) = 1 Then 
            NDOFT += 1 
            LMDOF(5, Ielem) = NDOFT   '5th dof is yyi-rotation 
        End If 
        If Releases(Ielem, 6) = 1 Then 
            NDOFT += 1 
            LMDOF(6, Ielem) = NDOFT   '6th dof is zzi-rotation 
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        End If 
 
        If Releases(Ielem, 10) = 1 Then 
            NDOFT += 1 
            LMDOF(10, Ielem) = NDOFT   '10th dof is xxi-rotation 
        End If 
        If Releases(Ielem, 11) = 1 Then 
            NDOFT += 1 
            LMDOF(11, Ielem) = NDOFT   '11th dof is yyi-rotation 
        End If 
        If Releases(Ielem, 12) = 1 Then 
            NDOFT += 1 
            LMDOF(12, Ielem) = NDOFT   '12th dof is zzi-rotation 
        End If 
    Next Ielem 
 
    ReDim Preserve MCOLH(NDOFT) 
 
End Sub 

 

3.2 Example 3.2 
Consider the structure in the next figure, with 3 elements and 4 nodes. At first there are no hinges 

(figure above), and the second ends of all the elements refer to the same dof. Then a y hinge is 

inserted at the second ends of elements no. 1, 2 (figure below): the LMDOF() array changes as 

shown in the figure. Dof no. 5 refers to the y rotation of node 4, and therefore after the insertion 

of the hinges, only to the 11th dof of element 3. 

 

It is not possible to insert another y hinge at the second end of element 3, because in this case 

equation 5 would have no correlated stiffness, producing an unstable structure. The LMDOF() array 

is constructed with the data from the IDDOF() array: to check that there is no instability, it is 

necessary to check that the dof present in IDDOF() are present at least once in LMDOF(). 
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The code of the subroutine Check_Release() is presented below: it checks wether the same dof is 

released at all the ends of the elements convergent to a node.  

 

 Sub Check_Release(File1 As StreamWriter) 
 
     'check if the same d.o.f. is released in all the elements convergent to a node. 
     'If this happens, there is a d.o.f. with no stiffness at the node, 
     'and the solver finds the structure unstable. 
     'in practice: all the d.o.f. in IDDOF() must be found in LMDOF() at least once 
 
     Dim Unstable, Found As Boolean 
     Dim Kdofn, Idof1 As Integer 
     Dim Message As String 
     Dim Ipoin As Integer = 1 
 
     Unstable = False : Errors = False 
 
     'loop on d.o.f. found in IDDOF(Ndofn, Ipoin) 
      For Idofn = 1 To NDOFN 
         If Unstable Then Exit For 
         For Ipoin = 1 To Npoin 
             If Unstable Then Exit For 
             Kdofn = IDDOF(Idofn, Ipoin) 
              Idof1 = Idofn + NDOFN 
 
             Found = False 
             'loop on LMDOF(Idofn, Ielem) elements 
             For Ielem = 1 To Nelem 
                 If LMDOF(Idofn, Ielem) = Kdofn Then 
                     Found = True 
                     Exit For 
                 End If 
                 If LMDOF(Idof1, Ielem) = Kdofn Then 
                     Found = True 
                     Exit For 
                 End If 
             Next Ielem 
             If Not Found Then 
                 If Kdofn <> 0 Then Unstable = True 
             End If 
         Next Ipoin 
     Next Idofn 
 
     If Unstable Then 
         Message = "At least one element convergent to node "  
         Message += Str$(Ipoin - 1) + "." + vbCrLf 
         Message += "must have unreleased rotations." + vbCrLf 
         Message += "Data correction necessary to proceed." + vbCrLf 
         MsgBox(Message, vbExclamation, "Warning") 
 
         PrtString = "" + vbCrLf 
         PrtString += Message 
         File1.WriteLine(PrtString) 
 
         Errors = True 
     End If 
 
 End Sub 
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The following code shows the storage of the rotations at the ends of the elements, after the solution 

of the equilibrium equations in subroutine BACKSU(): the array Rload() contains the calculated 

displacements (and rotations) of the nodes. 

 

        'for BEAM or WINK elements store rotations at the ends of the elements (needed 
for deformed shape drawing). 
        If Ntype = 2 Or Ntype = 3 Then 
            For Ielem = 1 To Nelem 
                ElemRotat(Icase, Ielem, 1) = Rload(LMDOF(4, Ielem)) 
                ElemRotat(Icase, Ielem, 2) = Rload(LMDOF(5, Ielem)) 
                ElemRotat(Icase, Ielem, 3) = Rload(LMDOF(6, Ielem)) 
                ElemRotat(Icase, Ielem, 4) = Rload(LMDOF(10, Ielem)) 
                ElemRotat(Icase, Ielem, 5) = Rload(LMDOF(11, Ielem)) 
                ElemRotat(Icase, Ielem, 6) = Rload(LMDOF(12, Ielem)) 
            Next Ielem 
        End If 

 

3.3 Validation example 3.3 
The validation is made with the model shown in the next figures. The cross section is the same of 

Validation example 2.2. The adopted units are kN, m, rad respectively for forces, lengths and angles. 

Materials are supposed to be weightless. 

 

 

C25/30 concrete - section 0.6x0.3 

A = 0.18 m2 
J33 = 0.00135 m4 
J22 = 0.0054 m4 
Jt = 0.003699 m4 
E = 31447161 kN/m2 
 = 0.1 
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The released moment is y at the initial node 3 of element 3. To avoid excessive complexity in the 

presentation of the comparison of the results, only the example of a y hinge is presented. 

However, the other possibilities have also been verified, with positive results. 

The following figures show the shear forces R2 and the bending moments M3 in the two load cases. 

The comparison of the results is made with the values indicated in the figures, and is listed below. 

 
Load case 1 

Shear Forces 
(kN) 

SismiCad Sap4 MdFem 

R2a -17.09 -17.7 -17.7 

R2b 32.91 -32.3 32.3 

 

Bending moments 
(kNm) 

SismiCad Sap4 MdFem 

M3mid 44.18 44.24 44.24 

M3b -36.64 36.51 -36.51 
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Load case 2 

Shear Forces 
(kN) 

SismiCad MdFem 

R2a -20.11 -20.13 

R2b 29.89 29.87 

 

Bending moments 
(kNm) 

SismiCad MdFem 

M3mid 19.036 19.08 

M3b -24.426 24.34 

 

The results obtained with Sap4 are identical to those of MdFem, and in any case the results obtained 

with SismiCad are practically the same. Sap 4 doesn’t allow the explicit definition of linearly 

distributed loads, therefore in load case 2 the comparison was limited to SismiCad only. 

 

3.4 Releases in the local coordinate system 
As already mentioned at the beginning of the chapter, working in the local coordinate system is an 

interesting method to apply releases to the ends of an element.  

This is the technique used by SAP4, which however has the defect of not calculating the released 

rotations at the beam ends. 

The advantage of this method is the ease of treating beams oriented in space in any way. 

The application of this method involves eliminating the contribution of the released degree of 

freedom, both in the local stiffness matrix [𝐾𝐿] and in the local equivalent loads vector [𝑓𝐿]. 

The processing required to have a generalized force (force or moment) equal to zero, is reported 

below with reference to the dof m. 

For any row i of the local stiffness matrix: 

𝐾𝑖,𝑗 = 𝐾𝑖,𝑗 −
𝐾𝑚,𝑖

𝐾𝑚,𝑚

𝐾𝑚,𝑗          with 𝑗 = 1 ÷ 12             (3.1) 

The load vector is processed with the following expression: 

     𝑓𝑖 = 𝑓𝑖 −
𝐾𝑚,𝑖

𝐾𝑚,𝑚
𝑓𝑚             (3.2) 

Although this method is not currently implemented in the MdFem program, the subroutines 

ModStiff() and ModLoa() used to (positively) check the above expressions are reported below. 

 

    Sub ModStif(ByRef Kmat(,) As Double) 
        'Modify stiffness to account for known zero member end forces 
 
        Dim Code, Kd, I1, I2 As Integer 
        Dim Sii, Krow(NEVAB) As Double 
 
        'this routine is created, at the moment, only for releasing M3 moment at first node i 
 
        For Inode = 1 To 2 
            If Inode = 1 Then 
                Code = 1 'that is Code=000001 - here is fixed, only to try the method 
            Else 
                Code = 0 'that is Code=000000 – no zero end force at node j 
                Exit Sub 
            End If 
            Kd = 100000 
            I1 = 6 * (Inode - 1) + 1 
            I2 = I1 + 5 
            For Idofn = I1 To I2 
                If Code < Kd Then 
                    Kd /= 10 
                Else 
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                    Sii = Kmat(Idofn, Idofn) 
                    For Jdofn = 1 To NEVAB 
                        Krow(Jdofn) = Kmat(Idofn, Jdofn) 'preserve row Idofn  
                        'store the ratios between row Idofn values and diagonal element 
                        Ratio(Inode, Jdofn) = Kmat(Idofn, Jdofn) / Sii 
                    Next Jdofn 
                    For Jdofn = 1 To NEVAB 'loop over the matrix rows 
                        If Ratio(Inode, Jdofn) <> 0 Then 
                            For Ldofn = 1 To NEVAB 'elaborate row Jdofn 
                                Kmat(Jdofn, Ldofn) -= Ratio(Inode, Jdofn) * Krow(Ldofn) 
                            Next Ldofn 
                        End If 
                    Next Jdofn 
                    Code -= Kd 
                    Kd /= 10 
                End If 
            Next Idofn 
        Next Inode 
 
    End Sub 

 

    Sub ModLoa(ByRef LocLoa() As Double) 
        'Modify local loads to account for known zero member end forces 
 
        Dim Code, Kd, I1, I2 As Integer 
        Dim Sfi As Double 
 
        'this routine is created, at the moment, only for releasing M3 moment at first node i 
 
        For Inode = 1 To 2 
            If Inode = 1 Then 
                Code = 1 'that is Code=000001 - here is fixed, only to try the method 
            Else 
                Code = 0 'that is Code=000000 - no zero end force at node j 
                Exit Sub 
            End If 
            Kd = 100000 
            I1 = 6 * (Inode - 1) + 1 
            I2 = I1 + 5 
            For Idofn = I1 To I2 
                If Code < Kd Then 
                    Kd /= 10 
                Else 
                    Sfi = LocLoa(Idofn) 
                    For Jdofn = 1 To NEVAB 'loop over the local load array rows 
                        If Ratio(Inode, Jdofn) <> 0 Then 
                            'elaborate row Jdofn 
                            LocLoa(Jdofn) -= Ratio(Inode, Jdofn) * Sfi 
                        End If 
                    Next Jdofn 
                    Code -= Kd 
                    Kd /= 10 
                End If 
            Next Idofn 
        Next Inode 
 
    End Sub 

 

3.5 Example 3.4 
A simple application example of the presented method is given below. It is a beam with a fixed left 

end and a pinned right end. 

The only degree of freedom in this model is y rotation at node 2. If we insert a 3 hinge at the 

first end of the element, as shown in the figure below, with this method the LMDOF() array doesn’t 

change. What changes is the local stiffness matrix and the equivalent load array of the element. 

For this very simple case it is possible to perform the entire calculation by hand, to verify the 

proposed method. The adopted units are kN, m respectively for forces and lengths. Materials are 

supposed to be weightless. 
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C25/30 concrete - section 0.4x0.4 
A = 0.16 m2 
J33 = 0.002133 m4 
J22 = 0.002133 m4 
Jt = 0.00315733 m4 
E = 31447161 kN/m2 
 = 0.1 

 

As shown in [9], the stiffness matrix of the element is: 

 

[𝐾𝐿] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝐴

𝐿
0 0 0 0 0 −

𝐸𝐴

𝐿
0 0 0 0 0

0
12𝐸𝐽3

𝐿3
0 0 0

6𝐸𝐽3
𝐿2

0 −
12𝐸𝐽3

𝐿3
0 0 0

6𝐸𝐽3
𝐿2

0 0
12𝐸𝐽2

𝐿3
0 −

6𝐸𝐽2
𝐿2

0 0 0 −
12𝐸𝐽2

𝐿3
0 −

6𝐸𝐽2
𝐿2

0

0 0 0
𝐺𝐽1
𝐿

0 0 0 0 0 −
𝐺𝐽1
𝐿

0 0

0 0 −
6𝐸𝐽2
𝐿2

0
4𝐸𝐽2

𝐿
0 0 0

6𝐸𝐽2
𝐿2

0
2𝐸𝐽2

𝐿
0

0
6𝐸𝐽3
𝐿2

0 0 0
4𝐸𝐽3

𝐿
0 −

6𝐸𝐽3
𝐿2

0 0 0
2𝐸𝐽3

𝐿

−
𝐸𝐴

𝐿
0 0 0 0 0

𝐸𝐴

𝐿
0 0 0 0 0

0 −
12𝐸𝐽3

𝐿3 0 0 0 −
6𝐸𝐽3
𝐿2 0

12𝐸𝐽3
𝐿3 0 0 0 −

6𝐸𝐽3
𝐿2

0 0 −
12𝐸𝐽2

𝐿3 0
6𝐸𝐽2
𝐿2 0 0 0

12𝐸𝐽2
𝐿3 0

6𝐸𝐽2
𝐿2 0

0 0 0 −
𝐺𝐽1
𝐿

0 0 0 0 0
𝐺𝐽1
𝐿

0 0

0 0 −
6𝐸𝐽2
𝐿2

0
2𝐸𝐽2

𝐿
0 0 0

6𝐸𝐽2
𝐿2

0
4𝐸𝐽2

𝐿
0

0
6𝐸𝐽3
𝐿2 0 0 0

2𝐸𝐽3
𝐿

0 −
6𝐸𝐽3
𝐿2 0 0 0

4𝐸𝐽3
𝐿 ]
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Using the data shown above, and neglecting the decimal places, the matrix becomes: 

 

[
 
 
 
 
 
 
 
 
 
 
 

2515772 0 0 0 0 0 −2515772 0 0 0 0 0
0 100615 0 0 0 100615 0 −100615 0 0 0 100615
0 0 100615 0 −100615 0 0 0 −100615 0 −100615 0
0 0 0 22565 0 0 0 0 0 −22565 0 0
0 0 −100615 0 134153 0 0 0 100615 0 67076 0
0 100615 0 0 0 134153 0 −100615 0 0 0 67076

−2515772 0 0 0 0 0 2515772 0 0 0 0 0
0 −100615 0 0 0 −100615 0 100615 0 0 0 −100615
0 0 −100615 0 100615 0 0 0 100615 0 100615 0
0 0 0 −22565 0 0 0 0 0 22565 0 0
0 0 −100615 0 67076 0 0 0 100615 0 134153 0
0 100615 0 0 0 67076 0 −100615 0 0 0 134153 ]

 
 
 
 
 
 
 
 
 
 
 

 

 

As shown in [9], the equivalent loads in local coordinates are: 

[𝑓𝐿]
𝑇 = [

𝑞1𝑙

2

𝑞2𝑙

2

𝑞3𝑙

2
0 −

𝑞3𝑙
2

12

𝑞2𝑙
2

12

𝑞1𝑙

2

𝑞2𝑙

2

𝑞3𝑙

2
0

𝑞3𝑙
2

12
−

𝑞2𝑙
2

12
] 

 

And, inserting the data, the array becomes: 

 

[0 20    0 0    0 6.666 0   20 0 0     0 −6.666] 

 

The release of 3 rotation at the first end of the element, corresponds to the release of the 6th dof 

of the element. In this case the expressions (3.1) and (3.2) become: 

𝐾𝑖,𝑗 = 𝐾𝑖,𝑗 −
𝐾6,𝑖

𝐾6,6

𝐾6,𝑗          with 𝑗 = 1 ÷ 12             (3.3) 

     𝑓𝑖 = 𝑓𝑖 −
𝐾6,𝑖

𝐾6,6
𝑓6              (3.4) 

Let’s calculate the transformed stiffness matrix of the element, starting from row 1 to row 12. 

All the rows i where 𝐾6,𝑖 = 0 remain unchanged. The only rows involved in the transformation are 

those where 𝐾6,𝑖 𝐾6,6⁄ ≠ 0: these are rows 2, 6, 8, 12. Furthermore, in each row, the columns 

involved in the transformations are only those where 𝐾6,𝑗 ≠ 0: these are (again) columns 2, 6, 8, 

12. 

row = 2: 𝐾6,2 𝐾6,6⁄ = 100615 134153 = 0.75⁄ = 𝑅 

 j=2 (column 2) 𝐾2,2 = 𝐾2,2 − 𝑅 ∙ 𝐾6,2 = 100615 − 0.75 ∙ 100615 = 25153 

 j=6 (column 6) 𝐾2,6 = 𝐾2,6 − 𝑅 ∙ 𝐾6,6 = 100615 − 0.75 ∙ 134153 = 0 

 j=8 (column 8) 𝐾2,8 = 𝐾2,8 − 𝑅 ∙ 𝐾6,8 = −100615 + 0.75 ∙ 100615 = −25153 

 j=12 (column 12) 𝐾2,12 = 𝐾2,12 − 𝑅 ∙ 𝐾6,12 = 100615 − 0.75 ∙ 67076 = 50307 

row = 6:  𝐾6,6 𝐾6,6⁄ = 1 = 𝑅 

 j=2 (column 2) 𝐾6,2 = 𝐾6,2 − 𝑅 ∙ 𝐾6,2 = 100615 − 1 ∙ 100615 = 0 

 j=6 (column 6) 𝐾6,6 = 𝐾6,6 − 𝑅 ∙ 𝐾6,6 = 134153 − 1 ∙ 134153 = 0 

 j=8 (column 8) 𝐾6,8 = 𝐾6,8 − 𝑅 ∙ 𝐾6,8 = −100615 + 1 ∙ 100615 = 0 

 j=12 (column 12) 𝐾6,12 = 𝐾6,12 − 𝑅 ∙ 𝐾6,12 = 67076 − 1 ∙ 67076 = 0 

The row corresponding to the dof to be released contains now all zeroes, as expected. 

row = 8:  𝐾6,8 𝐾6,6⁄ = −100615 134153⁄ = −0.75 = 𝑅 

 j=2 (column 2) 𝐾8,2 = 𝐾8,2 − 𝑅 ∙ 𝐾6,2 = −100615 + 0.75 ∙ 100615 = −25153 

 j=6 (column 6) 𝐾8,6 = 𝐾8,6 − 𝑅 ∙ 𝐾6,6 = −100615 + 0.75 ∙ 134153 = 0 

 j=8 (column 8) 𝐾8,8 = 𝐾8,8 − 𝑅 ∙ 𝐾6,8 = 100615 − 0.75 ∙ 100615 = 25153 

 j=12 (column 12) 𝐾8,12 = 𝐾8,12 − 𝑅 ∙ 𝐾6,12 = −100615 + 0.75 ∙ 67076 = −50307 
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row = 12:  𝐾6,12 𝐾6,6⁄ = 67076 134153 =⁄ 0.5 = 𝑅 

 j=2 (column 2) 𝐾12,2 = 𝐾12,2 − 𝑅 ∙ 𝐾6,2 = 100615 − 0.5 ∙ 100615 = 50307 

 j=6 (column 6) 𝐾12,6 = 𝐾12,6 − 𝑅 ∙ 𝐾6,6 = 67076 − 0.5 ∙ 134153 = 0 

 j=8 (column 8) 𝐾12,8 = 𝐾12,8 − 𝑅 ∙ 𝐾6,8 = −100615 + 0.5 ∙ 100615 = −50307 

 j=12 (column 12) 𝐾12,12 = 𝐾12,12 − 𝑅 ∙ 𝐾6,12 = 134153 − 0.5 ∙ 67076 = 100615 

 

The transformed local stiffness matrix becomes: 

 

[𝐾𝐿] =

[
 
 
 
 
 
 
 
 
 
 
 

2515772 0 0 0 0 0 −2515772 0 0 0 0 0

0 25153 0 0 0 0 0 −25153 0 0 0 50307

0 0 100615 0 −100615 0 0 0 −100615 0 −100615 0

0 0 0 22565 0 0 0 0 0 −22565 0 0

0 0 −100615 0 134153 0 0 0 100615 0 67076 0

0 0 0 0 0 0 0 0 0 0 0 0

−2515772 0 0 0 0 0 2515772 0 0 0 0 0

0 −25153 0 0 0 0 0 25153 0 0 0 −50307

0 0 −100615 0 100615 0 0 0 100615 0 100615 0

0 0 0 −22565 0 0 0 0 0 22565 0 0

0 0 −100615 0 67076 0 0 0 100615 0 134153 0

0 50307 0 0 0 0 0 −50307 0 0 0 100615]
 
 
 
 
 
 
 
 
 
 
 

 

 

Now, applying expression (3.4), we calculate the transformation of the equivalent load vector, 

starting from row 1 to row 12. In this case too, the rows i for which 𝐾6,𝑖 = 0 remain unchanged. 

The only rows involved in the transformation are those where 𝐾6,𝑖 𝐾6,6⁄ ≠ 0: these are rows 2, 6, 

8, 12.  

row = 2: 𝐾6,2 𝐾6,6⁄ = 100615 134153 = 0.75⁄ = 𝑅 

   𝑓2 = 𝑓 2 − 𝑅 ∙ f6 = 20 − 0.75 ∙ 6.666 = 15 

row = 6: 𝐾6,6 𝐾6,6⁄ = 1 = 𝑅 

   𝑓6 = 𝑓 6 − 𝑅 ∙ f6 = 6.666 − 1 ∙ 6.666 = 0 

The row corresponding to the dof to be released contains now a zero, as expected. 

row = 8: 𝐾6,8 𝐾6,6⁄ = −100615 134153 = −0.75⁄ = 𝑅 

   𝑓8 = 𝑓8 − 𝑅 ∙ f6 = 20 + 0.75 ∙ 6.666 = 25 

row = 12: 𝐾6,12 𝐾6,6⁄ = 67076 134153 = 0.5⁄ = 𝑅 

   𝑓12 = 𝑓 12 − 𝑅 ∙ f6 = −6.666 − 0.5 ∙ 6.666 = −10 

 

The equivalent loads array in local coordinates becomes: 

 

[𝑓𝐿]
𝑇 = [0 15    0 0    0 0 0   25 0 0     0 −10] (3.5) 

 

The next step consists in transforming the stiffness matrix and the equivalent load vector from the 

local to the global reference system. 

In practice, with reference to the previous figure: the elements referred to the local axis 1 become 

referred to the global x-axis; the elements referred to the local axis 2 become referred to the global 

z-axis; the elements referred to the local axis 3 become referred to the global y-axis with a change 

of sign. Without performing all the steps, the stiffness matrix in the global system becomes:
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[𝐾𝐺] =

[
 
 
 
 
 
 
 
 
 
 
 

2515772 0 0 0 0 0 −2515772 0 0 0 0 0

0 100615 0 0 0 100615 0 −100615 0 0 0 100615

0 0 25153 0 0 0 0 0 −25153 0 −50307 0

0 0 0 22565 0 0 0 0 0 −22565 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 100615 0 0 0 134153 0 −100615 0 0 0 67076

−2515772 0 0 0 0 0 2515772 0 0 0 0 0

0 −100615 0 0 0 −100615 0 100615 0 0 0 −100615

0 0 −25153 0 0 0 0 0 25153 0 50307 0

0 0 0 −22565 0 0 0 0 0 22565 0 0

0 0 −50307 0 0 0 0 0 50307 0 100615 0

0 100615 0 0 0 67076 0 −100615 0 0 0 134153 ]
 
 
 
 
 
 
 
 
 
 
 

 

 

The vector of equivalent loads must also be transported into the global reference system, and 

becomes: 

[𝑓𝐺]𝑇 = [0 0    15 0    0 0 0   0 25 0     10 0] 

 

The only dof of the structure is the rotation y,2 of node 2 around the y-axis, so the assembly of the 

stiffness matrix is reduced to the single element 𝐾(11,11). Similarly, the assembly of the load vector 

is reduced to the single element 𝑓(11). 

The system of equations to be solved is simply: 

100615 ∙ 𝜃𝑦,2 = 10 

From which: 

𝜃𝑦,2 =
10

100615
= 9.9389−5 

This value of 𝜃𝑦,2 in the global coordinate system corresponds to −𝜃3,𝑗 in the local coordinate 

system. 

By transforming the displacements (they are all equal to zero except 3,j) from the global to the 

local system, we obtain: 

[𝑢𝐿]
𝑇 = [0 0    0 0    0 0 0   0 0 0     0 −9.9389−5] 

Now let's calculate the internal forces [𝑓𝐿] of the element with the fundamental expression: 

[𝐾𝐿][𝑢𝐿] = [𝑓𝐿] 

The product is simple because in the vector [𝑢𝐿] the only element different from zero is the 12th. 

Then, for each row i, the forces result from the product of the element 𝐾𝐿(𝑖, 12) by the rotation 

𝑢𝐿(12). 

𝑓𝐿(1) = 𝐾𝐿(1,12) ∙ 𝑢𝐿(12) = 0 ∙ −9.9389−5 = 0 

𝑓𝐿(2) = 𝐾𝐿(2,12) ∙ 𝑢𝐿(12) = 50307 ∙ −9.9389−5 = −5 

𝑓𝐿(3) = 𝐾𝐿(3,12) ∙ 𝑢𝐿(12) = 0 ∙ −9.9389−5 = 0 

𝑓𝐿(4) = 𝐾𝐿(4,12) ∙ 𝑢𝐿(12) = 0 ∙ −9.9389−5 = 0 

𝑓𝐿(5) = 𝐾𝐿(5,12) ∙ 𝑢𝐿(12) = 0 ∙ −9.9389−5 = 0 

𝑓𝐿(6) = 𝐾𝐿(6,12) ∙ 𝑢𝐿(12) = 0 ∙ −9.9389−5 = 0 

𝑓𝐿(7) = 𝐾𝐿(7,12) ∙ 𝑢𝐿(12) = 0 ∙ −9.9389−5 = 0 

𝑓𝐿(8) = 𝐾𝐿(8,12) ∙ 𝑢𝐿(12) = −50307 ∙ −9.9389−5 = 5 

𝑓𝐿(9) = 𝐾𝐿(9,12) ∙ 𝑢𝐿(12) = 0 ∙ −9.9389−5 = 0 

𝑓𝐿(10) = 𝐾𝐿(10,12) ∙ 𝑢𝐿(12) = 0 ∙ −9.9389−5 = 0 

𝑓𝐿(11) = 𝐾𝐿(11,12) ∙ 𝑢𝐿(12) = 0 ∙ −9.9389−5 = 0 

𝑓𝐿(12) = 𝐾𝐿(12,12) ∙ 𝑢𝐿(12) = 100615 ∙ −9.9389−5 = −10 
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The last steps, as explained in [9], are the subtraction of the equivalent loads in (3.5), and the 

change of the signs of the forces at node i. 

 

𝑓𝐿(1) = −(0 − 0) = 0 

𝑓𝐿(2) = −(−5 − 15) = 20 

𝑓𝐿(3) = −(0 − 0) = 0 

𝑓𝐿(4) = −(0 − 0) = 0 

𝑓𝐿(5) = −(0 − 0) = 0 

𝑓𝐿(6) = −(0 − 0) = 0 

𝑓𝐿(7) = 0 − 0 = 0 

𝑓𝐿(8) = 5 − 25 = −20 

𝑓𝐿(9) = 0 − 0 = 0 

𝑓𝐿(10) = 0 − 0 = 0 

𝑓𝐿(11) = 0 − 0 = 0 

𝑓𝐿(12) = −10 − (−10) = 0 

 

For a better reading, the vector of internal forces referred to the local system is reported below: 

 

[𝑓𝐿]
𝑇 = [0 20    0 0    0 0 0   −20 0 0     0 0] 

 

The calculated values correspond to the R2 forces at the initial and final nodes of the element. All 

the other forces are zero at the ends of the element. 

It’s easy to calculate the bending moment M3 at the middle of the element: 

𝑀3 = −20 ∙
𝐿

2
+ 𝑞 ∙

𝐿2

2
= −20 ∙ 1 + 20 ∙

12

2
= −10 

 
The values of shear forces and bending moment are those expected. 

With this method, no information is obtained about the amount of the released displacement. 
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4 Elements capable of only tensile stresses 

The elements that can react only to tensile stresses are hereinafter called "tension elements". 

The management of "tension elements" requires an iterative procedure: if one of these elements 

is subject to compressive stresses, it is eliminated by assigning it a material with zero area and very 

low flexural characteristics. 

The iterations continue until there is no "tension element" with compressive stresses. 

The direct elimination of the "tension elements" subject to compression could perhaps lead in some 

cases to incorrect results, even if in the tested examples it never happened. 

A more conservative approach, adopted in the MdFem program for gap elements, would consist in 

the reduction of the geometric-mechanical characteristics of the tension elements subjected to 

compression, at each iteration. 

This change could be easily implemented, similarly to what will be presented later, regarding the 

gap elements. 

Note that in the MdFem program the load combinations are treated as load conditions, without 

exploiting the superposition of effects: this allows to solve nonlinear structures as in the case of 

tension elements or gap elements. 

Tension elements are identified in the program by the Boolean variable OnlyTen(Nelem), where 

Nelem is the total number of elements in the model. 

In the main procedure of the program, called MDFEM(), inside the load conditions/combinations 

loop, there is the iterative process of checking for any unwanted compressions on the tension 

elements. The loop on load conditions/combinations is presented below 

 

        For Icase = 1 To Ncase + NCOMB 
            'restore material characteristics, possibly changed for Tension or Gap elements 
            For Ielem = 1 To Nelem 
                If OriginalMater(Ielem) > 0 Then 
                    Mater(Ielem) = OriginalMater(Ielem) 
                End If 
            Next Ielem 
 
            ' *** CALCULATE FIRST (ELASTIC) STIFFNESS MATRIX 
            'always start the load case with a new Stiffness Matrix,  
            ‘to avoid problems with iterative modifications of the matrix 
            Call CreateStiffnessMatrix(FileWork1, FileWork3) 
 
            Niteration = 0 
 
            'initialize boolean variables in order to perform the first iteration 
            TensionOnEl = True : CompressionOnEl = True  
 
           'iteration loop for non linear elements (GAP or Tension elements) 
            Do While TensionOnEl Or CompressionOnEl  
                Niteration += 1 
 
                Call LOADS(Icase, Niteration, File1) 
 
                ' *** EQUATION SOLUTION 
                Errors = False 
                Call COLSOL(File1) 
                If Errors Then 
                    FileClose() : Exit Sub 
                End If 
 
                Call BACKSU(Icase) 
                Call ComputeReactions(Icase, FileWork1) 
                Call ComputeStresses(Icase, FileWork3) 
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                'BEGIN NON LINEAR CONTROLS for GAP or TENSION elements ------------ 
                'checks for GAP elements (they can't have tension forces) 
                TensionOnEl = False  
                If Ngaps > 0 Then 
                    'if tension is found in GAP elements, their stiffness is reduced 
                    Call CheckGaps(Icase, TensionOnEl)  
                End If 
 
                'checks for Tension elements (they can't have compression forces) 
                CompressionOnEl = False  
                If NelOnlyTens > 0 Then 
                    'if compression is found in Tension elements,  
                    ‘a new material with zero area is assigned 
                    Call CheckTensElements(Icase, CompressionOnEl)  
                End If 
 
                If TensionOnEl Or CompressionOnEl Then 'update stiffness matrix 
                    Call CreateStiffnessMatrix(FileWork1, FileWork3) 
                End If 
                'END OF NON LINEAR CONTROLS --------------------------------------- 
            Loop 
 
            If Ntype = 3 Then Call CalculateSoilStress() 
 
            Call WriteResults(Icase, File1, File2) 
        Next Icase 

 

The subroutine CheckTensElements() is presented below. 

 

    Sub CheckTensElements(ByVal Icase As Integer, ByRef CompressionOnEl As Boolean) 
 
        Dim OldMat, NewMat, Imats As Integer 
 
        'define a new material with zero area and very small flexural inertia  
        NewMat = Nmats + Ngaps + 1 
        Imats = FindMatMax(1) : PROPS(NewMat, 1) = PROPS(Imats, 1) * 1.0E-18   'E  
        PROPS(NewMat, 2) = 0   'area 
        Imats = FindMatMax(3) : PROPS(NewMat, 3) = PROPS(Imats, 3) * 1.0E-18   'Jxx 
        Imats = FindMatMax(4) : PROPS(NewMat, 4) = PROPS(Imats, 4) * 1.0E-18   'Jyy 
        Imats = FindMatMax(8) : PROPS(NewMat, 8) = PROPS(Imats, 8) * 1.0E-18   'Jt 
 
        For Ielem = 1 To Nelem - Ngaps 
            If OnlyTens(Ielem) = True Then 
                If Ntype = 2 Or Ntype = 3 Then 
                    If Stre1(Icase, Ielem, 1) < 0 Then 
                        CompressionOnEl = True 
                        'assign the element a material with zero area  
                        OldMat = Mater(Ielem) 
                        'G modulus 
                        PROPS(NewMat, 10) = 0.5 * PROPS(NewMat, 1) / (1 + PROPS(OldMat, 9))  
                        Mater(Ielem) = NewMat 
                    End If 
                End If 
            End If 
        Next Ielem 
 
    End Sub 
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4.1 Validation example 4.1 
Consider the structure shown in the following figure. It is a simple isostatic structure, for which 

stresses and strains can also be calculated by hand. The adopted units are kN, m respectively for 

forces and lengths. 

 
The following table shows the geometric and mechanical characteristics of the elements. Materials 

are supposed to be weightless. 

Mat. 1 – 20 – S235 steel bar Mat. 2 – 0.4x0.4 - C25/30 concrete 

A = 0.000314 m2 
J33 = 7.9E-9 m4 
J22 = 7.9E-9 m4 
Jt = 1.57E-8 m4 
E = 2.1E8 kN/m2 
 = 0.3 

A = 0.16 m2 
J33 = 0.002133 m4 
J22 = 0.002133 m4 
Jt = 0.00315733 m4 
E = 31447161 kN/m2 
 = 0.1 

 

The results check was performed using the model of the previous figure with the SismiCad program, 

while with the MdFem program the model of the following figure was used: elements 2 and 3 are 

declared as "tension elements". 
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The comparison of the results is listed below. 

 

 ux (m) uz (m) R1 el. 2, 3 
(kN) 

R1 el. 1 
(kN) 

SismiCad 1.2921E-3 -5.96E-6 14.1414 -10 
MdFem 1.2928E-3 -5.96E-6 14.1414 -10 

 

The results obtained with the two programs are practically the same. In the following image the 

results of MdFem are shown as they are presented by the program. 

 
In this very simple case, only one iteration was necessary. After solving the original structure, the 

tension elements subject to compression were eliminated: at the first iteration the solution was 

already definitive since no tension element was subject to compression anymore. 

 

5 Elements capable of only compressive stresses (gap elements) 

This type of element can also be called “contact element”: it can be: 1) closed, with compressive 

force transmission; 2) open, without any force transmission. Contact forces are in the global 

directions x, y, z. They must be thought as mono-directional fixity codes in the x, y, z directions. 

As already seen for tension elements, the management of gap elements requires an iterative 

procedure: if one of these elements is subject to tension stresses, its geometric-mechanical 

characteristics are reduced by a factor of 1000. Different reduction factors could be used, to 

prioritize the speed of execution (larger factors) or the precision of the results (smaller factors). 

This is a more conservative approach than the one used for tension elements, but it involves a 

significantly higher number of iterations. 

In any case, the approach can be easily modified, adopting the more drastic method presented for 

tension elements. 

As noted at §4, the MdFem program the load combinations are treated as load conditions, without 

exploiting the superposition of effects, which is valid only for linear elastic behaviour and not for 

nonlinear structures. 

Gap elements are identified in the program by the variable Gaps(Npoin, NDIME), where Npoin is 

the total number of nodes in the model, and NDIME = 3 is the number of dimensions. At the nodes 

where a gap element is applied, the direction of action of this element must not be constrained. 

The value of the variable Gaps(Npoin, NDIME) can be +1 or -1 depending on whether the gap can 

react in the positive or negative direction parallel to one of the global reference axes. A gap element 

can act in only one direction. 

 



3-D Beam Finite Element Programming - A Practical Guide: Part 3 –Advanced features  26 
 

 

From a practical point of view, a gap element is inserted into the model as a new element, with a 

length equal to 1/10 of the longest of the elements of the structure, with a very high area and with 

very low flexural stiffness. 

The code used in MdFem for the attribution of the initial geometric-mechanical characteristics of 

the gap elements is listed below. For each characteristic, the maximum value present in the 

structure is first found, and then this value is multiplied or divided by the value 1E6. This is an 

arbitrary value, which can also be modified. 

 

 'generate initial properties for gap elements 
 For Igap = 1 To Ngaps 
     Imats = FindMatMax(1) : PROPS(Nmats + Igap, 1) = PROPS(Imats, 1)               'E modulus 
     Imats = FindMatMax(2) : PROPS(Nmats + Igap, 2) = PROPS(Imats, 2) * 1000000     'area 
     If Ntype = 2 Or Ntype = 3 Then 
         Imats = FindMatMax(3) : PROPS(Nmats + Igap, 3) = PROPS(Imats, 3) / 1000000 'Jxx 
         Imats = FindMatMax(4) : PROPS(Nmats + Igap, 4) = PROPS(Imats, 4) / 1000000 'Jyy 
         Imats = FindMatMax(8) : PROPS(Nmats + Igap, 8) = PROPS(Imats, 8) / 1000000 'Jt0 
         PROPS(Nmats + Igap, 9) = 0                                            'Poisson ratio 
         Imats = Nmats + Igap 
         PROPS(Imats, 10) = 0.5 * PROPS(Imats, 1) / (1 + PROPS(Imats, 9))        'G modulus 
     End If 
 Next Igap  

 

The subroutine that generates the gap elements is listed below. 

 

    Sub GenerateGaps(File1 As StreamWriter) 
 
        Dim Inew, Idim1, Idof1 As Integer 
        Dim Delt1(3) As Single 
        Dim Lmin, Lmax, Leng2, Lengt, Lgap As Single 
 
        'find min, max lengths of elements in order to size the GAPS 
        Lmin = 900000000000.0# : Lmax = -90000000000.0# 
        For Ielem = 1 To Nelem 
            Leng2 = 0 
            For Idime = 1 To NDIME 
                Delt1(Idime) = XYCOO(Idime + 3, Ielem) - XYCOO(Idime, Ielem) 
                Leng2 = Leng2 + Delt1(Idime) * Delt1(Idime) 
            Next Idime 
            Lengt = Math.Sqrt(Leng2) 
 
            If Lmin > Lengt Then Lmin = Lengt 
            If Lmax < Lengt Then Lmax = Lengt 
        Next Ielem 
        Lgap = Lmax / 10 'gap element length 
 
        'set nodal coordinates of gap elements 
        PrtString = vbCrLf : PrtString += vbCrLf 
        PrtString += "         GAP ELEMENTS DEFINITION" + vbCrLf 
 
        PrtString += vbCrLf 
        PrtString += "         ***  A D D E D   N O D A L   D A T A  ***" + vbCrLf 
        ' *** WRITE NODAL DATA 
        PrtString += vbCrLf 
        PrtString += "         NODE         X-COORD.       Y-COORD.       Z-COORD." 
        File1.WriteLine(PrtString) 
        Inew = 0 
        For Ipoin = 1 To Npoin 
            For Idime = 1 To NDIME 
                If GAPS(Ipoin, Idime) <> 0 Then 
                    Inew = Inew + 1 
                    For Jdime = 1 To NDIME 
                        CORDS(Npoin + Inew, Jdime) = CORDS(Ipoin, Jdime) - GAPS(Ipoin, Jdime) 
* Lgap 
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                    Next Jdime 
 
                    'next 3 lines needed for local axes calculation 
                    Xcoor(Npoin + Inew) = CORDS(Npoin + Inew, 1) 
                    Ycoor(Npoin + Inew) = CORDS(Npoin + Inew, 2) 
                    Zcoor(Npoin + Inew) = CORDS(Npoin + Inew, 3) 
 
                    PrtString = String.Format("{0,13}", (Npoin + Inew).ToString("####0")) + 
"   " 
                    For Jdime = 1 To NDIME 
                        PrtString += String.Format("{0,15}", CORDS(Npoin + Inew, 
Jdime).ToString("0.0000E+00")) 
                    Next Jdime 
                    File1.WriteLine(PrtString) 
 
                    IJINC(Nelem + Inew, 1) = Ipoin 
                    IJINC(Nelem + Inew, 2) = Npoin + Inew 
 
                    'next 2 lines needed for local axes calculation 
                    Inc1(Nelem + Inew) = IJINC(Nelem + Inew, 1) 
                    Inc2(Nelem + Inew) = IJINC(Nelem + Inew, 2) 
 
                    Exit For 
                End If 
            Next Idime 
        Next Ipoin 
 
        'set restraint codes at new nodes 
        For Ipoin = Npoin + 1 To Npoin + Ngaps 
            For Idofn = 1 To NDOFN : IDDOF(Idofn, Ipoin) = 0 : Next Idofn 
        Next Ipoin 
 
        'generate elements 
        PrtString = vbCrLf 
        PrtString += "         ***  A D D E D   E L E M E N T S   ***" + vbCrLf 
        PrtString += vbCrLf 
        PrtString += "         TYPE  ELEMENT    NODE I   NODE J" '+ vbCrLf 
        File1.WriteLine(PrtString) 
 
        For Ielem = Nelem + 1 To Nelem + Ngaps 
            'SET UP INCIDENCES 
            For Idime = 1 To NDIME 
                Idim1 = Idime + NDIME 
                XYCOO(Idime, Ielem) = CORDS(IJINC(Ielem, 1), Idime) 
                XYCOO(Idim1, Ielem) = CORDS(IJINC(Ielem, 2), Idime) 
            Next Idime 
 
            'incidences are already set above 
 
            Mater(Ielem) = Nmats + Ielem - Nelem 
 
            For Idofn = 1 To NDOFN 
                Idof1 = Idofn + NDOFN 
                'load degrees of freedom at element ends 
                LMDOF(Idofn, Ielem) = IDDOF(Idofn, IJINC(Ielem, 1)) 
                LMDOF(Idof1, Ielem) = IDDOF(Idofn, IJINC(Ielem, 2)) 
            Next Idofn 
 
            'CALCULATE COLUMN HEIGHTS 
            Call COLHT(Ielem) 
 
            PrtString = "          GAP  " 
            PrtString += String.Format("{0,5}", Ielem.ToString("####0")) + "      " 
            PrtString += String.Format("{0,5}", IJINC(Ielem, 1).ToString("####0")) + "    " 
            PrtString += String.Format("{0,5}", IJINC(Ielem, 2).ToString("####0")) 
            File1.WriteLine(PrtString) 
        Next Ielem 
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        Call CalculateTmat(Nelem + 1, Nelem + Ngaps) 'calculate transformation T matrix for 
Gap elements: Tmat(,,) 
 
        'update nodes and elements numbers 
        OldNpoin = Npoin 
        OldNelem = Nelem 
        Npoin += Ngaps 
        Nelem += Ngaps 
 
    End Sub  

 

The iterative process of checking for any unwanted tensile stresses on the gap elements is already 

shown in §4, while the actual checking subroutine is presented below. 

 

 Sub CheckGaps(ByVal Icase As Integer, ByRef TensionOnEl As Boolean) 
 
     Dim Material As Integer 
 
     For Ielem = Nelem - Ngaps + 1 To Nelem 
         Material = Mater(Ielem) 
         If Ntype = 2 Or Ntype = 3 Then 
             If Stre1(Icase, Ielem, 1) > 0 Then 
                 TensionOnEl = True 
                 'reduce stiffness 
                 PROPS(Material, 1) /= 1000 'Young 
                 PROPS(Material, 2) /= 1000 'area 
                 PROPS(Material, 3) /= 1000 'Jxx 
                 PROPS(Material, 4) /= 1000 'Jyy 
                 PROPS(Material, 8) /= 1000 'Jt 
                 'G modulus 
                 PROPS(Material, 10) = 0.5 * PROPS(Material, 1) / (1 + PROPS(Material, 9))  
             End If 
         End If 
     Next Ielem 
 
    End Sub 
 

 

5.1 Validation example 5.1 
Let’s consider the structure shown in the following figure: it is the structure modelled with the Sap4 

and SismiCad programs, in order to check the results obtained with gaps elements in MdFem. Due 

to the symmetry, only one load condition was considered with the control programs. Node 1 has 

no restraints, while node 2, 3 have a hinge restraint The adopted units are kN, m respectively for 

forces and lengths. 

 
The following table shows the geometric and mechanical characteristics of the elements. Materials 

are supposed to be weightless. 
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C25/30 concrete - section 0.4x0.4 
A = 0.16 m2 
J33 = 0.002133 m4 
J22 = 0.002133 m4 
Jt = 0.00315733 m4 
E = 31447161 kN/m2 
 = 0.1 

 

The check of gap elements in MdFem was performed using the model shown in the following figure: 

at nodes 2, 3 a gap element is inserted, acting in the +z direction. 

 
The comparison of the results is listed below. 

 

 SismiCad Sap4 MdFem 

uz,4 (m) 0.001896 0.0018548 0.0018548 

R12 (kN) 30.40 30.63 30.625 

R13 (kN) -30.40 -30.63 -30.625 

M35,i (kNm) 65.028 65.22 65.222 

M35,j (kNm) -26.1692 26.65 -26.654 

 

As in the example of §3.3, the results obtained with Sap4 are identical to those of MdFem, and in 

any case the results obtained with SismiCad are practically the same. 

Despite the simplicity of the structure, with the conservative approach adopted for the 

management of the gap elements, 3 iterations were necessary in addition to the initial calculation. 
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6 Beams on elastic soil 

The soil contribution to the stiffness of a beam element is calculated as indicated in [11]. The soil is 

modeled according to the Winkler hypothesis, i.e. with independent springs. This means that the 

soil has no cohesion, and that stresses cannot spread outside the loading area. 

The stiffness Kw of the springs is defined by the ratio between the contact stress and the 

displacement of the point of application of the stress, calculated in the direction of the stress. The 

soil springs, by program convention, act in the local 2 direction of the element (see below for the 

definition of the local reference system). The soil stiffness is therefore: 

𝐾𝑤 =
𝜎2

𝑢2
 

In literature 𝐾𝑤 is known as modulus or coefficient of subgrade reaction. 

The local coordinate system of a beam is automatically defined as follows (see next figure): 

- local axis 1 goes from first node i to second node j, along the beam axis; 

- local axis 2, orthogonal to axis 1, is automatically set by the program: if the element 

direction is not parallel to the global z axis, axis 1 lays on the (1, z) plane; if the element is 

parallel to the global z axis, axis 2 is parallel to the global y axis; 

- local axis 3 results from the cross (or vector) product of two versors in the direction of the 

axes 1 and 2. The right hand rule is respected. 

 
In reference [11] the contribution of the soil stiffness is calculated for a 2D beam, for which the only 

variables are the displacements orthogonal to the beam and the rotations at the ends of the beam 

itself. If we extend this contribution to a 3D beam, for which the soil acts only along the local 

direction 2, these variables are: 

𝑢2,𝑖, 𝜃3,𝑖, 𝑢2,𝑗, 𝜃3,𝑗 

And the contribution of the soil stiffness is: 

 

[𝐾𝑠𝑜𝑖𝑙] = 𝐾𝑤𝑏 𝐿

[
 
 
 
 
 
 
 

13

35

11

210
𝐿

9

70
−

13

420
𝐿

1

105
𝐿2

13

420
𝐿 −

1

140
𝐿2

13

35
−

11

210
𝐿

𝑠𝑦𝑚𝑚.
1

105
𝐿2

]
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Where:  b = width of the beam resting on the soil 

  L = beam length 

 

The next figure shows a 3D beam element with the variables involved by the soil stiffness. 

 
The stiffness matrix of a beam is shown below, with the positions affected by the soil contribution 

highlighted. 

 

             [ 𝑢1,𝑖     𝑢2,𝑖       𝑢3,𝑖       𝜃1,𝑖       𝜃2,𝑖        𝜃3,𝑖      𝑢1,𝑗      𝑢2,𝑗      𝑢3,𝑗       𝜃1,𝑗        𝜃2,𝑗         𝜃3,𝑗    ] 

[𝐾𝐿] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐾1,1 0 0 0 0 0 𝐾1,7 0 0 0 0 0

𝐾2,2 0 0 0 𝐾2,6 0 𝐾2,8 0 0 0 𝐾2,12

𝐾3,3 0 𝐾3,5 0 0 0 𝐾3,9 0 𝐾3,11 0

𝐾4,4 0 0 0 0 0 𝐾4,10 0 0

𝐾5,5 0 0 0 𝐾5,9 0 𝐾5,11 0

𝐾6,6 0 𝐾6,8 0 0 0 𝐾6,12

𝐾7,7 0 0 0 0 0

𝐾8,8 0 0 0 𝐾8,12

𝑠𝑦𝑚𝑚. 𝐾9,9 0 𝐾9,11 0

𝐾10,10 0 0

𝐾11,11 0

𝐾12,12]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

[
 
 
 
 
 
 
 
 
 
 
 
 
 𝑢1,𝑖

 𝑢2,𝑖

 𝑢3,𝑖

𝜃1,𝑖

𝜃2,𝑖

𝜃3,𝑖

 𝑢1,𝑗

 𝑢2,𝑗

 𝑢3,𝑗

𝜃1,𝑗

𝜃2,𝑗

𝜃3,𝑗 ]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

In conclusion, if the soil acts only along the local axis 2, calling 𝐾∗ = 𝐾𝑤𝑏 𝐿, the highlighted 

elements become: 

𝐾2,2 =
12𝐸𝐽

3

𝐿3
+ 𝐾∗

13

35
 

𝐾2,6 =
6𝐸𝐽3

𝐿2 + 𝐾∗
11

210
𝐿 

𝐾2,8 = −
12𝐸𝐽3

𝐿3
+ 𝐾∗

9

70
 

𝐾2,12 =
6𝐸𝐽

3

𝐿2
− 𝐾∗

13

420
𝐿 
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𝐾6,6 =
4𝐸𝐽

3

𝐿
+ 𝐾∗

1

105
𝐿2 

𝐾6,8 = −
6𝐸𝐽

3

𝐿2
+ 𝐾∗

13

420
𝐿 

𝐾6,12 =
2𝐸𝐽

3

𝐿
−

1

140
𝐿2 

 

𝐾8,8 =
12𝐸𝐽

3

𝐿3
+ 𝐾∗

13

35
 

𝐾8,12 = −
6𝐸𝐽

3

𝐿2
−

11

210
𝐿 

 

𝐾12,12 =
4𝐸𝐽

3

𝐿
+ 𝐾∗

1

105
𝐿2 

 

In the MdFem program, the soil stiffness is added in the Beam3DstiffVaragnolo subroutine listed 

below, called after assembling the local stiffness matrix of the beam element. 

 

    Sub AddWinkler(ByRef Kmat(,) As Double, Aleng As Double, Imats As Integer) 
 
        Dim C3 As Double 
 
        C3 = PROPS(Imats, 5) * PROPS(Imats, 11) * Aleng 
 
        Kmat(2, 2) += C3 * (13 / 35) 
        Kmat(2, 6) += C3 * (11 / 210) * Aleng 
        Kmat(2, 8) += C3 * (9 / 70) 
        Kmat(2, 12) += C3 * (-13 / 420) * Aleng 
 
        Kmat(6, 6) += C3 * (1 / 105) * Aleng ^ 2 
        Kmat(6, 8) += C3 * (13 / 420) * Aleng 
        Kmat(6, 12) += C3 * (-1 / 140) * Aleng ^ 2 
 
        Kmat(8, 8) += C3 * (13 / 35) 
        Kmat(8, 12) += C3 * (-11 / 210) * Aleng 
 
        Kmat(12, 12) += C3 * (1 / 105) * Aleng ^ 2 
 
    End Sub 

 

After solving the system of equations, which gives the displacements referred to the global 

reference system, we still have to calculate the soil stress, which is: 

𝜎𝑠𝑜𝑖𝑙 = 𝐾𝑤 𝑢2 

The relationship between the displacements of node i in the global x, y, z directions, and the 

displacements of the same node in the local 1, 2, 3 directions is:  

                            [𝑢𝑖]𝐿
𝑇 = [𝑡] [𝑢𝑖]𝐺

𝑇  (6.1) 

where: [𝑢𝑖]𝐿
𝑇 = [𝑢1,𝑖 𝑢2,𝑖 𝑢3,𝑖] are the displacements at node i expressed in local coordinates; 

 [𝑢𝑖]𝐺
𝑇 = [𝑢𝑥,𝑖 𝑢𝑦,𝑖 𝑢𝑧,𝑖] are the displacements at node i expressed in global coordinates; 

 [𝑡] = [

𝛼1,𝑥 𝛼1,𝑦 𝛼1,𝑧

𝛼2,𝑥 𝛼2,𝑦 𝛼2,𝑧

𝛼3,𝑥 𝛼3,𝑦 𝛼3,𝑧

] are the cosines of the angles between local and global axes 

 

For node j, similar relations apply. 
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Since only the displacement in the local 2 direction is of interest, the application of relation (6.1) is 

reduced to: 

𝑢2,𝑖 = 𝛼2,𝑥 𝑢𝑥,𝑖 + 𝛼2,𝑦 𝑢𝑦,𝑖 + 𝛼2,𝑧 𝑢𝑧,𝑖 

𝑢2,𝑗 = 𝛼2,𝑥  𝑢𝑥,𝑗 + 𝛼2,𝑦 𝑢𝑦,𝑗 + 𝛼2,𝑧 𝑢𝑧,𝑗 

Below is the listing of the CalculateSoilStress() subroutine that calculates the soil stresses at the 

nodes of the elements. 

 

 Sub CalculateSoilStress() 
     'calculate soil stresses for WINK elements, parallel to local 2 axis 
 
     Dim Mat, In1, In2 As Integer 
 
     For Icase = 1 To Ncase + NCOMB 
       For i% = 1 To Nelem 
         Mat = Mater(i%) 
         In1 = Inc1(i%) 
         In2 = Inc2(i%) 
 
         If PROPS(Mat, 5) * PROPS(Mat, 11) <> 0 Then 
          'project global displacement at node i in local 2 direction 
          SoilStress(Icase, In1)=Tmat(i%, 2, 1)*Displ(Icase, In1, 1)*PROPS(Mat, 11) 
          SoilStress(Icase, In1)+=Tmat(i%, 2, 2)*Displ(Icase, In1, 2)*PROPS(Mat, 11) 
          SoilStress(Icase, In1)+=Tmat(i%, 2, 3)*Displ(Icase, In1, 3)*PROPS(Mat, 11) 
 
          'project global displacement at node j in local 2 direction 
          SoilStress(Icase, In2)=Tmat(i%, 2, 1)*Displ(Icase, In2, 1)*PROPS(Mat, 11) 
          SoilStress(Icase, In2)+=Tmat(i%, 2, 2)*Displ(Icase, In2, 2)*PROPS(Mat, 11) 
          SoilStress(Icase, In2)+=Tmat(i%, 2, 3)*Displ(Icase, In2, 3)*PROPS(Mat, 11) 
         End If 
       Next i% 
     Next Icase 
 
 End Sub 

 

6.1 Validation example 6.1 
Let’s consider the structure shown in the next figure: this problem is taken from [2], where it was 

solved by inserting concentrated springs of appropriate stiffness at the nodes. This may be a 

sufficiently approximate approach, and in any case this is a good method to easily check the 

goodness of the implementation of the Winkler beam finite element. Unfortunately, in the cited 

text there is an error in the calculation of the springs applied to the first and last node. 

For this reason, for the validation of the MdFem program, the structure with concentrated springs 

was first solved using the values published in [2]. Once the results were checked, the structure was 

calculated with the correct spring values, then comparing the results with those obtained by 

MdFem with Winkler elements. At each node only 𝑢𝑧 and 𝜃𝑦 dof are allowed. 

The adopted units are kN, m respectively for forces and lengths. 
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The following table shows the geometric and mechanical characteristics of the elements. Materials 

are supposed to be weightless. 

 

Concrete - section 2.64x0.6 
A = 0.1.584 m2 
J33 = 0.04752 m4 
J22 = 0.9199872 m4 
Jt = 0.162864 m4 
E = 21700000 kN/m2 
 = 0.1 

 

The coefficient of subgrade reaction 𝐾𝑤 has a value of 22000 kN/m3. The spring value Kn at node n 

is given by the following product: 

𝐾𝑛 = 𝐾𝑤 𝑏 
𝐿𝑛−1𝐿𝑛

2
 

where:   b = 2.64 m is the width of the concrete section 

  𝐿𝑛−1 is the length of the element to the left of node n 

  𝐿𝑛−1 is the length of the element to the right of node n 

 

The following table contains the calculation of the spring values and the values found in [2]. The 

first and last values are different because in [2] the entire length of the element has been used 

instead of half the length. 

 

Node x-coord. 
(m) 

Element 
length (m) 

Kz (kN/m) 
(correct 
value) 

Kz (kN/m) 
(Bowles) 

1 0  5808.00 11616 
2 0.2 0.2 11616.00 11616 
3 0.4 0.2 14520.00 14520 
4 0.7 0.3 26426.40 26426.41 
5 1.31 0.61 48787.20 48787.2 
6 2.38 1.07 62145.60 62145.59 
7 3.45 1.07 57499.20 58499.2 
8 4.36 0.91 44140.80 44140.8 
9 4.97 0.61 24393.60 24393.61 
10 5.2 0.23 13358.40 13358.41 
11 5.43 0.23 19747.20 19747.2 
12 5.88 0.45 27588.00 27588 
13 6.38 0.5 14520.00 29040.02 
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The first comparisons, between the results published in [2] and those of MdFem, is listed below. 

The comparison is made with the displacements and with the bending moments. The soil pressures 

are proportional to the displacements and therefore there is no need to control them. 

 

Displacements (m) Bowles MdFem Error (%) 

uz,1 0.01181 0.01179 0.17 

uz,2 0.01131 0.01129 0.18 

uz,10 0.00875 0.00875 0 

uz,13 0.00972 0.00972 0 

 

Bending Moments 
(kNm) 

Bowles MdFem Error (%) 

M32,i -83 -80.66 2.8 

M32,j 296 -296.93 0.3 

M3max 1225.25 1224.4 0.07 

M39,i 195.25 194.42 0.4 

M39,j -468.75 468.21 0.1 

 

The results are practically the same, ignoring some strange signs indicated in [2]  for the bending 

moments. 

We then proceed to calculate the same structure with the MdFem program: 1) with the correct 

values of the concentrated springs; 2) again with concentrated spring, but dividing the structure 

into a greater number of elements; 3) using the Winkler elements presented in this chapter.  

 

Displacements (m) MdFem with 
correct 
spring 
values 

MdFem with 
thickened 

mesh 

MdFem with 
Winkler 
elements 

uz,x=0 0.01212 0.01228 0.1233 

uz,x=0.2 0.01161 0.01175 0.1179 

uz,x=5.2 0.00971 0.00974 0.00975 

uz,x=6.38 0.01125 0.01132 0.01134 

 

Bending Moments 
(kNm) 

MdFem with 
correct 
spring 
values 

MdFem with 
thickened 

mesh 

MdFem with 
Winkler 
elements 

M3x=0.2 -93.9 -93.6 -93.9 

M3max -1341.0 -1344.6 -1345.9 

M3x=5.2 356.6 356.7 356.7 

 

By dividing the structure into a greater number of elements, closer values are obtained between 

the concentrated spring model and the one with Winkler elements. It can be seen that the 

displacements increase and tend to the values calculated with the continuous model of the Winkler 

element. 
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6.2 Validation example 6.2 
Another validation example was made with the structure represented in the next figure, using the 

SismiCad and MdFem programs, with the (continuous) Winkler elements presented in this chapter. 

The adopted units are kN, m, rad respectively for forces, lengths and angles. Materials are supposed 

to be weightless. 

 

 

C25/30 concrete - section 0.6x0.3 

A = 0.18 m2 
J33 = 0.00135 m4 
J22 = 0.0054 m4 
Jt = 0.003699 m4 
E = 31447161 kN/m2 
 = 0.1 

The coefficient of subgrade reaction 𝐾𝑤 has a value of 15000 kN/m3.  

The SismiCad program proposes a mesh with 6 elements by default. The comparison with MdFem 

is conducted with three discretizations: one with only 2 elements, one with 6 elements and one 

with 10 elements. In the following table the results are listed, referred to the end points A, C and 

the central point B. 

 

 SismiCad 
(6 elements) 

MdFem 
(2 elements) 

MdFem  
(6 elements) 

MdFem  
(10 elements) 

uz A = uz C 7.31E-4 7.2E-4 7.31E-4 7.31E-4 

uz B -2.804E-3 -2.758E-3 -2.804E-3 -2.804E-3 

M3B 52.91 53.78 52.88 52.90 

 

The results are positive, with an error of 1.6% on the bending moment already with only two 

elements. With 6 elements and with 10 elements the results are practically the same. 

A check was also done with the elements arranged along the z-axis, to check the correctness of the 

implementation: the check gave a positive result. 
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7 Program MdFem 

The MdFem program has been published in [9] and [10], and adding the subroutines presented in 

this paper does not require complex work. For this reason I have chosen not to republish the entire 

program. In any case, anyone interested can request the entire program at 

info@studioingegneriavaragnolo.com. 

The complete program also includes a preprocessor with a user manual and a graphical interface 

for the visualization of the model and the results. 

Anyone wishing to use the program must remember that numerous checks have been carried out, 

but the responsibility always remains of the user as set out below. 

 

IN NO EVENT SHALL PAOLO VARAGNOLO BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, 
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE 
OF THE SOFTWARE MdFem AND ITS DOCUMENTATION. PAOLO VARAGNOLO SPECIFICALLY 
DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE AND 
ACCOMPANYING DOCUMENTATION, IS PROVIDED "AS IS". PAOLO VARAGNOLO HAS NO OBLIGATION 
TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.  

 

8 Final Remarks 

With the features presented in this article, the MdFem program reaches a decent level, and is able 

to analyze fairly complex structures. 

A lot of time has been spent to achieve this result, although of course the MdFem program is still 

not comparable to many commercial programs available on the market.  

In any case, I think that the practical tips and insights on the techniques adopted, with detailed and 

step-by-step explanations of some examples, can be useful to many readers.  

I was happy to write this article and the previous ones [9] and [10], so I could put the work done in 

order. 

 

 

 

 

 



3-D Beam Finite Element Programming - A Practical Guide: Part 3 –Advanced features  38 
 

 

9 Bibliography 

[1] Bathe K. J., Finite element procedures in engineering analysis; Prentice-Hall, New Jersey; (1982). 

[2] Bowles J. E., Foundation Analysis and Design; McGraw-Hill International Editions; (1988). 

[3] Capurso M., Introduzione al calcolo automatico delle strutture; E.S.A.C. - Roma; (1977). 

[4] Cesari F., Introduzione al metodo degli elementi finiti; Pitagora Editrice Bologna; (1982). 

[5] Clarke D., Computer e strutture; BE-MA Editrice - Milano; (1979). 

[6] Gugliotta, A.: “Elementi Finiti – Parte I”. Otto editore, (2002). 

[7] Hinton E., Owen D.R.J., An introduction to finite element computations; Pineridge Press Limited - 

Swansea, U.K.; (1979). 

[8] Schrefler B., Vitaliani R., Calcolo automatico dei telai spaziali; CLEUP - Padova; (1978). 

[9] Varagnolo P., 3-D Beam Finite Element Programming -A Practical Guide: Part 1 – Static Analysis; 

ResearchGate, (2021). 

[10] Varagnolo P., 3-D Beam Finite Element Programming - A Practical Guide Part 2 – Dynamic Modal 

Analysis (Software Included); ResearchGate, (2024). 

[11] Vitaliani R., Martini L., Lezioni di calcolo automatico - 1a parte; CUSL NUOVA VITA - Padova; 

(1987). 

[12] Zienkiewicz O.C., The finite element method - third edition; McGRAW-HILL, U.K.; (1977). 

 

 

https://www.researchgate.net/publication/352816965_3-D_Beam_Finite_Element_Programming_-A_Practical_Guide_Part_1?_sg%5B0%5D=zoB-VMKLuCP0ud8-l4U2sN4f4ZFPWzRkOCQc4mmla94iOdEmflortgSJtwE6B-JESGW1KcnoQFqXwpuQ6qf0HIHdq3pmbdLmHlHVIIAo.ulB7kfp3dk1aFXwogOlbHVC0oMAkxR2idxmHAvaRlosLBt3GR2Q3gPvs3XBJTL5cgv4nLcvHARwAm3WWTMETzQ&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6ImhvbWUiLCJwYWdlIjoicHJvZmlsZSIsInByZXZpb3VzUGFnZSI6InByb2ZpbGUiLCJwb3NpdGlvbiI6InBhZ2VDb250ZW50In19

