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1 Introduction

The program MdFem has been presented in [9] for the basic static analysis, and in [10] for the modal
response spectrum analysis. In this paper some advanced features in static analysis will be
presented.

The aim of this paper is to describe some techniques useful in the analysis of frame structures. For
each new feature examples will be presented, along with the related code. As in the previous works
cited, we want to focus on the programmer's point of view.

The theoretical and mathematical framework will therefore not be addressed, since it is already
widely available in many books and papers.

The MdFem program implements a 3-D Beam element. It is a straight, 2 nodes element: at each
node there are 3 translational and 3 rotational degrees of freedom (dof). This element is capable of
transmitting axial and shear forces, along with torque and bending moments.
The new features described in this paper are:

1) spring elements;

2) release of moments at the element ends;

3) elements capable of only tensile stresses;

4) elements capable of only compressive stresses (gap elements);

5) beams on elastic soil.
Several validation examples will be presented in this paper, comparing MdFem results with the
results of Sap4 (in the version of 1994 by Bruce F. Maison, based on the original 1973 Sap4
developed by K. J. Bathe, E. L. Wilson, F. E. Peterson from the University of California, Berkley) and
SismiCad (a widly used commercial program by Concrete S.r.L. — Padova — Italy).

2 Spring elements

The springs can be defined for each of the 6 degrees of freedom (dof) of a node. In this paper they
are supposed to be elastic. The dof where the spring is applied must not be restrained.

The translational springs behave according to the Hooke’s law and their values are expressed as the
ratio of a force and the displacement in the direction of the force. The intensity of the translational
springs in the x, y, z global directions are therefore:

szFx/Ux
K:=F./u,

The concept can be extended to the rotational dof, where the intensity of the springs is defined as
the ratio of a moment and the rotation about the same axis.

Kix = Mxx / ex
Kyy = Myy / 0y
Kzz = MZZ / eZ

In the MdFem program the spring values are stored in the array SPRIN(Npoin, Ndofn), where Npoin
is the number of nodes in the model and Ndofn is the number of degrees of freedom (6) at each
node.

The effect of the springs is considered by simply adding, in the global stiffness matrix, their stiffness
to the degree of freedom on which they act. From [9] we know that the degrees of freedom of the
structure are stored in the array IDDOF(Ndofn, Npoin), while the addresses of the diagonal
elements of the global stiffness matrix are stored in the array MAXAD(Ndoft), where Ndoft is the
total number of dof in the structure.
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The global stiffness matrix of the structure [K;] is stored in compact form in the array

GLOBK(Index), with the active columns scheme as described in [1], [9].

2.1 Example 2.1

Consider the structure in the next figure, with 2 elements and 3 nodes. Node 1 is fixed and has no
degrees of freedom, while at nodes 2, 3 there are 6 + 6 degrees od freedom, 3 displacements and
3 rotations each. After some preliminary elaborations, the array IDDOF(Ndofn, Npoin) will contain

the values listed below.

dof=7+12e3

(4] 017 | «—dofli=u
0| 2|8 | «—dof2=uy
0| 3|9 | ee—dof3=u;

dof=1+6 @2 IDDOF = ol 4 10| «—dof4=0
0|5 |11 | «—dof5=06.
i 0|6 |12 | «—dof6=06,

node 1
node 2
node 3

At node 2 there are the 6 dof (ux2, Uy,2, Us,2, Ox2, 0y,2, 0,2), and at node 3 there are the 6 dof (ux3, Uy,3,

Uz,3, ex,3; ey,3; 62,3)-

The following figure shows the MAXAD() array referred to the previous figure, and the numbering

of the element indices in the global stiffness matrix GLOBK().

Let’s add a spring with intensity Kx acting in the global x direction, as shown in the next figure. The
value Kx is stored in the array SPRIN() at the position corresponding to node 3 and dof 1 (ux):
SPRIN(3, 1) = Kx. The array IDDOF(1, 3) indicates that the dof corresponding to dof 1 and node 3 is
number 7. The corresponding value of MAXAD(7) = 22 and therefore the value Kx will be added to

GLOBK(22):
GLOBK(22) = GLOBK(22) + Kx

KX Ex‘z Uy‘2 Ux‘2 ex,Z ey,Z 92,2 Ux‘.’i Uy‘S UX‘S ex‘S ey,B ez&_
dof =712 S.VW\/_E 113 |6 |10[15|21 |28 |36 |45 |51 |66 |78
2
4
7
11
[GLOBK] 16
4 29
NDOFT = 12 RN
“s
e/(/ 46
Ss
56
1 D.OF.no. 12 gl ¢
/77”77 global stiffness matrix of the structure GLOBK():

numbering of the element indices
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The subroutine used in the program for the assemblage of the springs’ stiffnesses is presented
below.

Sub ADDSPR()
Dim Ldofn, Lkglo As Long

For Ipoin = 1 To Npoin

For Idofn = 1 To NDOFN
Ldofn = IDDOF(Idofn, Ipoin)
Lkglo = MAXAD(Ldofn)
GLOBK(Lkglo) = GLOBK(Lkglo) + SPRIN(Ipoin, Idofn)
Next Idofn
Next Ipoin

End Sub

2.2 Validation example 2.2

In order to check all the possible spring types and directions, the model shown in the next figures
has been calculated. The adopted units are kN, m, rad respectively for forces, lengths and angles.
Materials are supposed to be weightless.

7(0,0,8) é14
6]

1(0,0,0)

C25/30 concrete - section 0.6x0.3
A =0.18 m?

Js3 = 0.00135 m*

Jan = 0.0054 m*

Ji: = 0.003699 m*

E 31447161 KN/m?

v 0.1

In the following figures the springs and the loads are represented. Their values are listed in the next
tables.
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g . Kxx
¢ 3
Kzz
z
Kx
v
y
X
Kz
léz .?:
/ /
7 7
5] 127
/ /
? qy % qy
6 / 13 /'
/ /
/ /
5]~ ]
; e
-
<\
Kx Ky Kz Kxx Kyy Kzz
Node (kN/m) (kN/m) (kN/m) (kNm/rad) | (kNm/rad) | (kNm/rad)
2 0 0 50000 0 0 0
4 50000 0 0 0 0 0
6 0 50000 0 0 0 0
10 0 0 0 0 15000 0
12 0 0 0 0 0 15000
14 0 0 0 15000 0 0
qx qy qz
Elements (kN/m) | CKkN/m) (kN/m)
1, 2, 7, 8 0 0 30
3, 4, 9, 10 30 0 0
5, 6, 11, 12 0 30 0
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In the next three figures, some of the main results are highlighted: these results are compared with
those obtained with the program SismiCad, for the validation of MdFem.

R26,j R212,

R22 |
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The geometry, the spring values and the load values are organized in order to obtain the same
results in the three global directions. The comparison of the results follows: signs will be omitted in
the tables.

Displacements SismiCad MdFem error
(m)
U;,2=Uy u=Uy 6 0.001827 0.0018204 0.36%
Uz o=U, 11=U, 13 0.012073 0.011954 0.99%
Shear Forces SismiCad MdFem error
(kN)
R2,,:=R34,i=R2,; 45.67 45.51 0.35%
R2,,;=R34,;=R2s, 74.33 74.49 0.22%
R2s,:=R310,i=R21>,1 17.54 17.578 0.22%
R2s,5=R310,5=R212, ; 102.46 102.42 0.0U%
Bending Moments SismiCad MdFem error
(kNm)
M3;,:= M2y,:= M3 1 11.342 11.019 2.8%
M3, 5= M2y ;= M3¢; 68.658 68.981 0.U47%
M3s = M210:= M3y ; 103.4759 103.440 0.03%
M3s,5= M210,5= M312,; 66.3571 66.249 0.16%
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3 Moments release at the end of the elements

A release in moment is the same as a release in rotation: the only way to ensure rotation continuity
from one element to another is to transfer moment between them. Hence a moment end release
implies different rotations at the end of concurring elements.

The approach followed by MdFem program to release the moments at the end of the elements, is
to add a new dof where required. This technique allows the calculation of the released rotations at
the ends of the elements, where the moments are zero.

The possible releases could be technically in any degree of freedom, but the choice has been made
to allow only global rotation releases. Some kind of translational releases is allowed by means of
elements capable of only tensile or only compression forces: these are described further.

Another approach is not to assemble the stiffnesses related to the released rotations, referred to
the local coordinate system. This is the technique used by SAP4, however it does not allow to
calculate the rotations of the released ends. On the other hand, this technique deals with rotations
and moments referred to the local axes, that could be very useful for elements not parallel to the
global reference system.

In the MdFem program the released dof are stored in the array Releases(Nelem, NEVAB=2xNdofn),
where Nelem is the number of elements in the model and Ndofn is the number of degrees of
freedom at each node (6 degrees of freedom).

Since only rotational releases are allowed, as a choice, the Releases() array will refer only to Ox,i,

Oy,i, ez,i, Ox,j, ey,j, ez,j. The corresponding indexes will be therefore: Releases(lelem, 1+3) for the
three rotations of the first node, and Releases(lelem, 10+12) for the three rotations of the second
node.

The degrees of freedom of the structure are associated to the elements via the array
LMDOF(NEVAB, Nelem), which is constructed with the indications contained in the array IDDOF()
introduced in the previous paragraph and in [9]. To insert a free rotation at the end of an element,
it is sufficient to define a new dof, in addition to those already identified by the geometry and the
constraints of the structure.

Technically the problem is solved like this, but in practice it is also necessary to check that not all
the rotations of the elements that converge to a node are released: if it happens, there is a d.o.f.
with no stiffness at the node, and the structure is unstable. This check is obtained with the
subroutine Check_Release() shown later.

Another precaution is also needed: it is necessary to store the rotations of the free elements in an
array, in order to output the calculation results, and also to allow the correct drawing of the
deformed structure. The extra rotations are stored in the array ElemRotat(Ncase, Nelem, 1+6),
where Ncase is the number of load conditions + load combinations, Nelem is the number of

elements, and the third dimension refers to the six rotations ex,i, ey,i, ez,i, Gx,j, Gy,j, Gz,,-.

3.1 Example 3.1

Consider the structure in the next figure, with 3 elements and 4 nodes. There are 6 dof at node no.
3 and 6 dof at node no. 4. The LMDOF() array contains the indexes of the degrees of freedom at the
ends of the elements, and the colors highlight which dof are common between the elements.
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3 dof 1+6 4 _dof 7+12

LMDOF =

§_;
§l\)

[=NelelelNe RNl

Noowe~Nyoooooo
]

element 2

node 2
element 1 element 3
node 1 node 3

element 1

node 3

0
0
0
0
0
0

element 3
node 4

element 2
node 4

By inserting a ey hinge at the first (left) end of element no. 3, as shown in the next figure, an extra
dof is created, associated to LMDOF(5, 3). Therefore the rotations of the elements converging to

node no. 3 are no more the same.

3 ,dof 1+6 4, dof 7+12
4d0f13‘3‘
1 2 LMDOF = |
1 ” 2,

The subroutine used in the program to add the dof corresponding to the released rotations is

presented below.

Sub MOME_RELEASE()

ReDim LMDOF(NEVAB, Nelem + Ngaps)

'Add new d.o.f. if there is some release, and set their number in LMDOF array
'LMDOF will be completed with normally restrained d.o.f. in INPELE subroutine

For Ielem = 1 To Nelem

If Releases(Ielem, 4) = 1 Then
NDOFT += 1
LMDOF (4, Ielem) = NDOFT

End If

If Releases(Ielem, 5) = 1 Then
NDOFT += 1
LMDOF(5, Ielem) = NDOFT

End If

If Releases(Ielem, 6) = 1 Then
NDOFT += 1

LMDOF(6, Ielem) = NDOFT

3-D Beam Finite Element Programming - A Practical Guide: Part 3 -Advanced features

'th dof is xxi-rotation

'5th dof is yyi-rotation

'6th dof is zzi-rotation
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End If

If Releases(Ielem, 10) = 1 Then

NDOFT += 1

LMDOF(10, Ielem) = NDOFT  '10th dof is xxi-rotation
End If
If Releases(Ielem, 11) = 1 Then

NDOFT += 1

LMDOF(11, Ielem) = NDOFT '11th dof is yyi-rotation
End If
If Releases(Ielem, 12) = 1 Then

NDOFT += 1

LMDOF(12, Ielem) = NDOFT  '12th dof is zzi-rotation
End If

Next Ielem

ReDim Preserve MCOLHCNDOFT)

End Sub

3.2 Example 3.2

Consider the structure in the next figure, with 3 elements and 4 nodes. At first there are no hinges

(figure above), and the second ends of all the elements refer to the same dof. Then a ey hinge is
inserted at the second ends of elements no. 1, 2 (figure below): the LMDOF() array changes as

shown in the figure. Dof no. 5 refers to the ey rotation of node 4, and therefore after the insertion
of the hinges, only to the 11" dof of element 3.

3 4 dof1+6 £

) 3E r .
o\ [0l [o
0 0 0
0 0 0
of Yo/ \o
LMDOF =
ﬂ\.
z 3
4
il
1 i 16 |
T !
3 dof 1+6 2
= ho) 1= 7
2 +d0f8 +dof 7 3 g
0
0
0
0

LMDOF =

1

Vol :
It is not possible to insert another ey hinge at the second end of element 3, because in this case
equation 5 would have no correlated stiffness, producing an unstable structure. The LMDOF() array

is constructed with the data from the IDDOF() array: to check that there is no instability, it is
necessary to check that the dof present in IDDOF() are present at least once in LMDOF().
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The code of the subroutine Check_Release() is presented below: it checks wether the same dof is
released at all the ends of the elements convergent to a node.

Sub Check_Release(Filel As StreamWriter)

'check if the same d.o.f. is released in all the elements convergent to a node.
'If this happens, there is a d.o.f. with no stiffness at the node,

'and the solver finds the structure unstable.

'in practice: all the d.o.f. in IDDOF() must be found in LMDOF() at least once

Dim Unstable, Found As Boolean
Dim Kdofn, Idofl As Integer
Dim Message As String

Dim Ipoin As Integer = 1

Unstable = False : Errors = False

'loop on d.o.f. found in IDDOF(Ndofn, Ipoin)
For Idofn = 1 To NDOFN
If Unstable Then Exit For
For Ipoin = 1 To Npoin
If Unstable Then Exit For
Kdofn = IDDOF(Idofn, Ipoin)
Idofl = Idofn + NDOFN

Found = False
'loop on LMDOF(Idofn, Ielem) elements
For Ielem = 1 To Nelem

If LMDOF(Idofn, Ielem) = Kdofn Then
Found = True
Exit For

End If

If LMDOF(Idofl, Ielem) = Kdofn Then

Found = True
Exit For
End If
Next Ielem
If Not Found Then
If Kdofn <> 0 Then Unstable = True
End If
Next Ipoin
Next Idofn

If Unstable Then
Message = "At least one element convergent to node "
Message += Str$(Ipoin - 1) + "." + vbCrLf
Message += "must have unreleased rotations." + vbCrLf
Message += "Data correction necessary to proceed." + vbCrLf
MsgBox(Message, vbExclamation, "Warning")

PrtString = "" + vbCrLf
PrtString += Message
Filel.WriteLine(PrtString)

Errors = True
End If

End Sub
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The following code shows the storage of the rotations at the ends of the elements, after the solution
of the equilibrium equations in subroutine BACKSU(): the array Rload() contains the calculated
displacements (and rotations) of the nodes.

'for BEAM or WINK elements store rotations at the ends of the elements (needed
for deformed shape drawing).
If Ntype = 2 Or Ntype = 3 Then
For Ielem = 1 To Nelem
ElemRotat(Icase, Ielem, 1)
ElemRotat(Icase, Ielem, 2)
ElemRotat(Icase, Ielem, 3)
ElemRotat(Icase, Ielem, u4)
ElemRotat(Icase, Ielem, 5)
ElemRotat(Icase, Ielem, 6)
Next Ielem
End If

Rload(LMDOF(4, Ielem))
Rload(LMDOF(5, Ielem))
Rload(LMDOF(6, Ielem))
Rload(LMDOF(10, Ielem))
Rload(LMDOF(11, Ielem))
Rload(LMDOF(12, Ielem))

3.3 Validation example 3.3

The validation is made with the model shown in the next figures. The cross section is the same of
Validation example 2.2. The adopted units are kN, m, rad respectively for forces, lengths and angles.
Materials are supposed to be weightless.

3(0,0.3)
L

1(0,0,0) y

C25/30 concrete - section 0.6x0.3

A=0.18 m?

J33 = 0.00135 m*
Jy, = 0.0054 m*

Je = 0.003699 m*

E = 31447161 KN/m?
v=0.1
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load case 1

Fz =-50kN

gz = -10 kN/m

—.X
iy
\VNF
3
Vitid
load case 2
Vesteidd

The released moment is ey at the initial node 3 of element 3. To avoid excessive complexity in the

presentation of the comparison of the results, only the example of a Gy hinge is presented.
However, the other possibilities have also been verified, with positive results.

The following figures show the shear forces R2 and the bending moments M3 in the two load cases.
The comparison of the results is made with the values indicated in the figures, and is listed below.

LR . M3b
R2at I T 11T S=TII [T
M3mid
load case 1 load case 1
ST clld 77 Vi
[[LL[[[[ree . M3b
R I T T T 1T S e
M3mid
load case 2 load case 2
Vit ST ST T
Load case 1
Shear Forces SismiCad Sapd MdFem
(kN)
R2a -17.09 -17.7 =-17.7
R2b 32.91 -32.3 32.3
Bending moments SismiCad Sapd MdFem
(kNm)
M3mid 4g.18 ug .24 gy .24
M3b -36.64 36.51 -36.51
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Load case 2

Shear Forces SismiCad MdFem
(kN)

R2a -20.11 -20.13

R2b 29.89 29.87

Bending moments SismiCad MdFem
(kNm)

M3mid 19.036 19.08

M3b -24.426 24,34

The results obtained with Sap4 are identical to those of MdFem, and in any case the results obtained
with SismiCad are practically the same. Sap 4 doesn’t allow the explicit definition of linearly
distributed loads, therefore in load case 2 the comparison was limited to SismiCad only.

3.4 Releases in the local coordinate system
As already mentioned at the beginning of the chapter, working in the local coordinate system is an
interesting method to apply releases to the ends of an element.

This is the technique used by SAP4, which however has the defect of not calculating the released
rotations at the beam ends.

The advantage of this method is the ease of treating beams oriented in space in any way.

The application of this method involves eliminating the contribution of the released degree of
freedom, both in the local stiffness matrix [K; ] and in the local equivalent loads vector [f; ].

The processing required to have a generalized force (force or moment) equal to zero, is reported
below with reference to the dof m.

For any row i of the local stiffness matrix:
Km,i K
iy = Km,m mj

The load vector is processed with the following expression:
K .
fi=fi— ™ fn (3:2)
mm

Although this method is not currently implemented in the MdFem program, the subroutines
ModStiff() and ModLoa() used to (positively) check the above expressions are reported below.

K, =K withj =1+ 12 (3.1)

ij

Sub ModStif(ByRef Kmat(,) As Double)
'Modify stiffness to account for known zero member end forces

Dim Code, Kd, I1, I2 As Integer
Dim Sii, Krow(NEVAB) As Double

'this routine is created, at the moment, only for releasing M3 moment at first node i

For Inode = 1 To 2
If Inode 1 Then
Code = 1 'that is Code=000001 - here is fixed, only to try the method
Else
Code = 0 'that is Code=000000 — no zero end force at node j
Exit Sub
End If
100000
6 * (Inode - 1) + 1
I1 +5
For Idofn = I1 To I2
If Code < Kd Then
Kd /= 10
Else

—
[
o
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Sii = Kmat(Idofn, Idofn)
For Jdofn = 1 To NEVAB
Krow(Jdofn) = Kmat(Idofn, Jdofn) 'preserve row Idofn
'store the ratios between row Idofn values and diagonal element
Ratio(Inode, Jdofn) = Kmat(Idofn, Jdofn) / Sii
Next Jdofn
For Jdofn = 1 To NEVAB 'loop over the matrix rows
If Ratio(Inode, Jdofn) <> 0@ Then
For Ldofn = 1 To NEVAB 'elaborate row Jdofn
Kmat(Jdofn, Ldofn) -= Ratio(Inode, Jdofn) * Krow(Ldofn)
Next Ldofn
End If
Next Jdofn
Code -= Kd
Kd /= 10
End If
Next Idofn
Next Inode

End Sub

Sub ModLoa(ByRef LocLoa() As Double)
'Modify local loads to account for known zero member end forces

Dim Code, Kd, I1, I2 As Integer
Dim Sfi As Double

'this routine is created, at the moment, only for releasing M3 moment at first node i

For Inode = 1 To 2
If Inode 1 Then
Code = 1 'that is Code=000001 - here is fixed, only to try the method
Else
Code = 0 'that is Code=000000 - no zero end force at node j
Exit Sub
End If
Kd = 100000
I1 =6 * (Inode - 1) + 1
I2 I1 +5
For Idofn = I1 To I2
If Code < Kd Then
Kd /= 10
Else
Sfi = LocLoa(Idofn)
For Jdofn = 1 To NEVAB 'loop over the local load array rows
If Ratio(Inode, Jdofn) <> 0 Then
'elaborate row Jdofn
LocLoa(Jddofn) -= Ratio(Inode, Jdofn) * Sfi
End If
Next Jdofn
Code —= Kd
Kd /= 10
End If
Next Idofn
Next Inode

End Sub

3.5 Example 3.4

A simple application example of the presented method is given below. It is a beam with a fixed left
end and a pinned right end.

The only degree of freedom in this model is ey rotation at node 2. If we insert a 03 hinge at the
first end of the element, as shown in the figure below, with this method the LMDOF() array doesn’t
change. What changes is the local stiffness matrix and the equivalent load array of the element.

For this very simple case it is possible to perform the entire calculation by hand, to verify the

proposed method. The adopted units are kN, m respectively for forces and lengths. Materials are
supposed to be weightless.

3-D Beam Finite Element Programming - A Practical Guide: Part 3 -Advanced features 16




q,=d,= 20 kN/m

1(0,0,0)

-

1

i TzT; T i

LMDOF =

2(2,0,0)

Ux, 1
Uy, 1
Uz 1
exj
8y_1
0z.1

Uy 2
Uy.2
uz?2
9x2
By_z
0z2

o= 0000 oNeleloeloele]

C25/30 concrete - section 0.4x0.4
A =0.16 m?

Ji;; = 0.002133 m*
J,; = 0.002133 m*
J: = 0.00315733 m*

31447161 KN/m?
0.1

EA 0
L
12E],
-=
0 0
0 0
0 0
6E];
0 -0
EA 0
L
12E],
0 I
0 0
0 0
0 0
6E];
0 -0

0 0
0 0
12EJ,
— L3 0
GJ1
0 -7
6E],
L2 0
0 0
0 0
0 0
12EJ,
L3 0
G/
o 0
6E],
L2
0 0
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Using the data shown above, and neglecting the decimal places, the matrix becomes:

As shown in [9], the equivalent loads in local coordinates are:

r_ [91l g2l qsl
TALR

And, inserting the data, the array becomes:

The release of O3 rotation at the first end of the element, corresponds to the release of the 6™ dof

[0 20 0 0 0 6666 0 20 0 0O 0 —6.666]

of the element. In this case the expressions (3.1) and (3.2) become:

Kﬁ,i . .
Ki; =Ky _rs(,KﬁJ withj =1+ 12
K6"
fi=fi— E;fﬁ

r 2515772 0 0 0 0 0 —2515772 0 0 0
0 100615 0 0 0 100615 0 —100615 0 0
0 0 100615 0 —100615 0 0 0 —100615 0
0 0 0 22565 0 0 0 0 0 —22565
0 0 —100615 0 134153 0 0 0 100615 0
0 100615 0 0 0 134153 0 —100615 0 0
—2515772 0 0 0 0 0 2515772 0 0 0
0 —100615 0 0 0 —100615 0 100615 0 0
0 0 —100615 0 100615 0 0 0 100615 0
0 0 0 —22565 0 0 0 0 0 22565
0 0 —100615 0 67076 0 0 0 100615 0
0 100615 0 0 0 67076 0 —100615 0 0

_%lz Q2lz Q_ll CI_zl CI_3l CI3l2 _CIZZZ
2 12 12 2 2 2 12 12

0
0

—100615

0

67076

0
0
0

100615

0

134153

0

(3.3)

(3.4)

Let’s calculate the transformed stiffness matrix of the element, starting from row 1 to row 12.

All the rows i where K¢ ; = 0 remain unchanged. The only rows involved in the transformation are
those where Ké_i/K6,6 # 0: these are rows 2, 6, 8, 12. Furthermore, in each row, the columns
involved in the transformations are only those where K, ; # 0: these are (again) columns 2, 6, 8,

12.

row = 2: Ke2/Kes = 100615/134153 = 0.75 = R

j=2 (column2) Ky, =Ky, — R-Kg, = 100615 — 0.75 - 100615 = 25153
j=6 (C0|umn 6) K2,6 = K2,6 —R- K6,6 =100615—-0.75-134153 =0

j=8 (CO|Umn 8) K2,8 = KZ,S —R- K6,8 = _100615 + 075 * 100615 = _25153

j=12 (C0|umn 12) K2,12 = K2,12 - R - K6,12 = 100615 - 075 ) 67076 = 50307

row = 6: K6,6/K6,6 =1=R

j=2 (column2) Ky, = Ks, — R Kg, = 100615 — 1100615 = 0
j=6 (column6) Kz = Kgg— R Kgg = 134153 — 1134153 = 0
j=8 (column8)  Kgg = Keg — R Kgg = —100615 + 1-100615 = 0
j=12 (column 12) Kg1, = Kg12 — R - Kg 1, = 67076 — 167076 = 0

The row corresponding to the dof to be released contains now all zeroes, as expected.
row = 8: Keg/Kse = —100615/134153 = —0.75 = R

j=2 (C0|umn 2) KS,Z = K8,2 —R- K6,2 = —100615 + 0.75-100615 = —25153

j=6 (C0|umn 6) K8,6 = K8,6 —R- K6,6 = —100615 + 0.75-134153 =0
j=8 (column8)  Kgg = Kgg— R Keg = 100615 — 0.75 - 100615 = 25153

j=12 (COIUmn 12) K8,12 = K8,12 - R " K6,12 = _100615 + 075 " 67076 = _50307
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row = 12 K¢ 12/Kes = 67076/134153 = 0.5 = R
j=2 (column2)  Kyp, =Ky, — R Kg, = 100615 — 0.5 100615 = 50307
j=6 (column 6)  Kip¢ = Kiz6 — R Kgg = 67076 — 0.5 - 134153 = 0
j=8 (column8)  Kip5 = Kip5— R+ Kgg = —100615 + 0.5 100615 = —50307
j=12 (column 12) Ky515 = Kiz12 — R - Kg 1, = 134153 — 0.5 67076 = 100615

The transformed local stiffness matrix becomes:

r 2515772 0 0 0 0 0 —2515772 0 0 0 0
0 25153 0 0 0 0 0 —25153 0 0 0
0 0 100615 0 —-100615 0 0 0 —100615 0 —100615
0 0 0 22565 0 0 0 0 0 —22565 0
0 0 —100615 0 134153 0 0 0 100615 0 67076
[K,] = 0 0 0 0 0 0 0 0 0 0 0
—2515772 0 0 0 0 0 2515772 0 0 0 0
0 —25153 0 0 0 0 0 25153 0 0 0
0 0 —100615 0 100615 O 0 0 100615 0 100615
0 0 0 —22565 0 0 0 0 0 22565 0
0 0 —100615 0 67076 0 0 0 100615 0 134153
0 50307 0 0 0 0 0 —-50307 0 0 0

Now, applying expression (3.4), we calculate the transformation of the equivalent load vector,
starting from row 1 to row 12. In this case too, the rows i for which K4 ; = 0 remain unchanged.
The only rows involved in the transformation are those where K ; /K¢ 6 # 0: these are rows 2, 6,
8, 12.

row = 2: Ke2/Kee = 100615/134153 = 0.75 = R
fo=f,—R-fg=20—-0.75"6.666 = 15
row = 6: Kes/Kss=1=R

fe=fe— R fg=6.666—1-6.666=0
The row corresponding to the dof to be released contains now a zero, as expected.

row = 8: Kes/Kes = —100615/134153 = —0.75 = R
fo=fo—R-fs =20+0.75- 6.666 = 25
row = 12: K 12/Kee = 67076/134153 = 0.5 = R

fiz=f12— R fg =—6.666—0.5'6.666 = —10

The equivalent loads array in local coordinates becomes:

[f;]"=[0 15 0 0 0 0 025 0 0 0 -—10] (3.5)

The next step consists in transforming the stiffness matrix and the equivalent load vector from the
local to the global reference system.

In practice, with reference to the previous figure: the elements referred to the local axis 1 become
referred to the global x-axis; the elements referred to the local axis 2 become referred to the global
z-axis; the elements referred to the local axis 3 become referred to the global y-axis with a change
of sign. Without performing all the steps, the stiffness matrix in the global system becomes:
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r 2515772 0 0 0 0 0 —2515772 0 0 0 0
0 100615 0 0 0 100615 0 —100615 0 0 0

0 0 25153 0 0 0 0 0 —25153 0 —-50307
0 0 0 22565 0 0 0 0 0 —22565 0
0 0 0 0 0 0 0 0 0 0 0
[K,] = 0 100615 0 0 0 134153 0 —100615 0 0 0
—2515772 0 0 0 0 0 2515772 0 0 0 0
0 —100615 0 0 0 -—100615 0 100615 0 0 0

0 0 —25153 0 0 0 0 0 25153 0 50307
0 0 0 —22565 0 0 0 0 0 22565 0

0 0 —50307 0 0 0 0 0 50307 0 100615
0 100615 0 0 0 67076 0 —100615 0 0 0

The vector of equivalent loads must also be transported into the global reference system, and
becomes:

[f¢gl"=[0 0 15 0 0 0 0 0 25 0 10 O]

The only dof of the structure is the rotation ey,z of node 2 around the y-axis, so the assembly of the
stiffness matrix is reduced to the single element k(11,11). Similarly, the assembly of the load vector
is reduced to the single element f(11).

The system of equations to be solved is simply:
100615-6,,, = 10

From which:

=_———=199389"°
9.2 100615 389

This value of 6,,, in the global coordinate system corresponds to —63 ; in the local coordinate
system.

By transforming the displacements (they are all equal to zero except 03j) from the global to the
local system, we obtain:
[u]"=[0 0 0 00 0 00O 0 0 0 —9.938975]

Now let's calculate the internal forces [f] of the element with the fundamental expression:
[KpI[ur] = [fi]

The product is simple because in the vector [u; ] the only element different from zero is the 12th.

Then, for each row i, the forces result from the product of the element K (i, 12) by the rotation

u; (12).

(D) =K, (1,12) - u;(12) = 0-—-9.938975 =0

f1(2) =K, (2,12) *u;(12) = 50307 - —9.93897° = —5

f1(3) =K,(3,12) *u,(12) =0--9.9389"5 =0

f1(4) = K, (412) *u,(12) =0--9.938975 =0

f1(5) =K, (512) *u,(12) =0--9.9389"5 =0

f1(6) = K, (6,12) *u;(12) = 0-—9.938975 = 0

(7 =K, (7,12) *u,(12) = 0-—9.938975 = 0

f1(8) = K;,(8,12) - u;(12) = —=50307 - —9.9389°> =5

f1(9) = K,(9,12) - u;(12) = 0-—9.938975 = 0

f1(10) = K, (10,12) - u; (12) = 0-—9.9389"> = 0

f1(11) = K, (11,12) - u;(12) = 0-—9.9389"> = 0

f,(12) = K, (12,12) - u; (12) = 100615 - —9.93897° = —10
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The last steps, as explained in [9], are the subtraction of the equivalent loads in (3.5), and the
change of the signs of the forces at node J.

fil)=-(0-0)=0
f.(2)=—(-5-15) =20
fiB)=-(0-0)=0
fi(4)=-(0-0)=0
fi(®)=-(0-0)=0
fi(6)=—-(0-0)=0
i) =0-0=0
f.(8)=5-25=-20
f.(9)=0-0=0
£.(10)=0-0=0
f(1)=0-0=0
f.(12) = =10 — (-10) = 0

For a better reading, the vector of internal forces referred to the local system is reported below:
[f,]F=[0 20 0 0 0 0 0 —20 0 0 O O]
The calculated values correspond to the R2 forces at the initial and final nodes of the element. All

the other forces are zero at the ends of the element.

It's easy to calculate the bending moment M3 at the middle of the element:
L L2 2

M3 =-20-= —=-20-14+20r—=-1

3 0 5 +q > 0-1+20 > 0

R2; =-20 M3 = -10

R2; =20

The values of shear forces and bending moment are those expected.

With this method, no information is obtained about the amount of the released displacement.
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4 Elements capable of only tensile stresses

The elements that can react only to tensile stresses are hereinafter called "tension elements".

The management of "tension elements" requires an iterative procedure: if one of these elements
is subject to compressive stresses, it is eliminated by assigning it a material with zero area and very
low flexural characteristics.

The iterations continue until there is no "tension element" with compressive stresses.

The direct elimination of the "tension elements" subject to compression could perhaps lead in some
cases to incorrect results, even if in the tested examples it never happened.

A more conservative approach, adopted in the MdFem program for gap elements, would consist in
the reduction of the geometric-mechanical characteristics of the tension elements subjected to
compression, at each iteration.

This change could be easily implemented, similarly to what will be presented later, regarding the
gap elements.

Note that in the MdFem program the load combinations are treated as load conditions, without
exploiting the superposition of effects: this allows to solve nonlinear structures as in the case of
tension elements or gap elements.

Tension elements are identified in the program by the Boolean variable OnlyTen(Nelem), where
Nelem is the total number of elements in the model.

In the main procedure of the program, called MDFEM(), inside the load conditions/combinations
loop, there is the iterative process of checking for any unwanted compressions on the tension
elements. The loop on load conditions/combinations is presented below

For Icase = 1 To Ncase + NCOMB
'restore material characteristics, possibly changed for Tension or Gap elements
For Ielem = 1 To Nelem
If OriginalMater(Ielem) > O Then
Mater(Ielem) = OriginalMater(Ielem)
End If
Next Ielem

' *xx CALCULATE FIRST (ELASTIC) STIFFNESS MATRIX

'always start the load case with a new Stiffness Matrix,

‘to avoid problems with iterative modifications of the matrix
Call CreateStiffnessMatrix(FileWorkl, FileWork3)

Niteration = 0

'initialize boolean variables in order to perform the first iteration
TensionOnELl = True : CompressionOnEl = True

'iteration loop for non linear elements (GAP or Tension elements)
Do While TensionOnEl Or CompressionOnEl
Niteration += 1

Call LOADS(Icase, Niteration, Filel)

' *xx%x EQUATION SOLUTION
Errors = False
Call COLSOL(Filel)
If Errors Then

FileClose() : Exit Sub
End If

Call BACKSU(Icase)

Call ComputeReactions(Icase, FileWorkl)
Call ComputeStresses(Icase, FileWork3)
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'BEGIN NON LINEAR CONTROLS for GAP or TENSION elements ——-————————-—
'checks for GAP elements (they can't have tension forces)
TensionOnEl = False
If Ngaps > 0 Then
'if tension is found in GAP elements, their stiffness is reduced
Call CheckGaps(Icase, TensionOnEl)
End If

'checks for Tension elements (they can't have compression forces)
CompressionOnEl = False
If NelOnlyTens > 0 Then
'if compression is found in Tension elements,
‘a new material with zero area is assigned
Call CheckTensElements(Icase, CompressionOnEl)
End If

If TensionOnEl Or CompressionOnEl Then 'update stiffness matrix
Call CreateStiffnessMatrix(FileWorkl, FileWork3)

End If

'"END OF NON LINEAR CONTROLS

Loop

If Ntype = 3 Then Call CalculateSoilStress()

Call WriteResults(Icase, Filel, File2)
Next Icase

The subroutine CheckTensElements() is presented below.

Sub CheckTensElements(ByVal Icase As Integer, ByRef CompressionOnEl As Boolean)

Dim OldMat, NewMat, Imats As Integer

'define a new material with zero area and very small flexural inertia
NewMat = Nmats + Ngaps + 1

Imats

FindMatMax(1) : PROPS(NewMat, 1)

PROPS(Imats, 1) * 1.0E-18 'E

PROPS(NewMat, 2) = 0 'area

Imats
Imats
Imats

FindMatMax(3) : PROPS(NewMat, 3)
FindMatMax(4) : PROPS(NewMat, u4)
FindMatMax(8) : PROPS(NewMat, 8)

PROPS(Imats, 3) * 1.0E-18 ' Ixx
PROPS(Imats, 4) * 1.0E-18 'Jyy
PROPS(Imats, 8) * 1.0E-18 'Jt

For Ielem = 1 To Nelem - Ngaps
If OnlyTens(Ielem) = True Then

If Ntype = 2 Or Ntype = 3 Then
If Strel(Icase, Ielem, 1) < 0 Then
CompressionOnEl = True
'assign the element a material with zero area
OldMat = Mater(Ielem)
'G modulus

PROPS(NewMat, 10) = 0.5 * PROPS(NewMat, 1) / (1 + PROPS(OldMat, 9))

Mater(Ielem) = NewMat
End If
End If

End If
Next Ielem

End Sub
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4.1 Validation example 4.1

Consider the structure shown in the following figure. It is a simple isostatic structure, for which
stresses and strains can also be calculated by hand. The adopted units are kN, m respectively for
forces and lengths.

3(3,0,3) Fx=10kN ux, uz

—————
o=
A
a>
Qi\//
i z
y
ST X 74 7 77

2(3,0,0)

V7

1(0,0,0)

The following table shows the geometric and mechanical characteristics of the elements. Materials
are supposed to be weightless.

Mat. 1 - ¢20 — $235 steel bar Mat. 2 — 0.4x0.4 - C25/30 concrete
A = 0.000314 m? A =0.16 m?

J:s = 7.9E-9 m* J:s = 0.002133 m*

Jzz = 7.9E-9 m* Jzz = 0.002133 m*

Ji = 1.57E-8 m* Jt = 0.00315733 m*

E = 2.1E8 kN/m? E = 31447161 kN/m?

v = 0.3 v =0.1

The results check was performed using the model of the previous figure with the SismiCad program,
while with the MdFem program the model of the following figure was used: elements 2 and 3 are

declared as "tension elements".

load case 2 load case 1
4(3,0,3) Fx =-10kN Fx =10 kN
y
X T
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The comparison of the results is listed below.

ux (m) uz (m) R1 el. 2, 3 Rl el. 1
(kN) (kN)
SismiCad 1.2921E-3 -5.96E-6 14.1414 -10
MdFem 1.2928E-3 -5.96E-6 14.1414 -10

The results obtained with the two programs are practically the same. In the following image the
results of MdFem are shown as they are presented by the program.

AL A14E+01
-

414E+01
N

4 00q

PN B E2
-

0.000E+00

Load condition || 2 o T2

"1.000E+01

Load condition  ~||1 o] i ,,4'/2

"1.000E+01
0.000E+00
In this very simple case, only one iteration was necessary. After solving the original structure, the

tension elements subject to compression were eliminated: at the first iteration the solution was
already definitive since no tension element was subject to compression anymore.

5 Elements capable of only compressive stresses (gap elements)

This type of element can also be called “contact element”: it can be: 1) closed, with compressive
force transmission; 2) open, without any force transmission. Contact forces are in the global
directions x, y, z. They must be thought as mono-directional fixity codes in the x, y, z directions.

As already seen for tension elements, the management of gap elements requires an iterative
procedure: if one of these elements is subject to tension stresses, its geometric-mechanical
characteristics are reduced by a factor of 1000. Different reduction factors could be used, to
prioritize the speed of execution (larger factors) or the precision of the results (smaller factors).
This is a more conservative approach than the one used for tension elements, but it involves a
significantly higher number of iterations.

In any case, the approach can be easily modified, adopting the more drastic method presented for
tension elements.

As noted at §4, the MdFem program the load combinations are treated as load conditions, without
exploiting the superposition of effects, which is valid only for linear elastic behaviour and not for
nonlinear structures.

Gap elements are identified in the program by the variable Gaps(Npoin, NDIME), where Npoin is
the total number of nodes in the model, and NDIME = 3 is the number of dimensions. At the nodes
where a gap element is applied, the direction of action of this element must not be constrained.
The value of the variable Gaps(Npoin, NDIME) can be +1 or -1 depending on whether the gap can
react in the positive or negative direction parallel to one of the global reference axes. A gap element
can act in only one direction.
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From a practical point of view, a gap element is inserted into the model as a new element, with a
length equal to 1/10 of the longest of the elements of the structure, with a very high area and with
very low flexural stiffness.

The code used in MdFem for the attribution of the initial geometric-mechanical characteristics of
the gap elements is listed below. For each characteristic, the maximum value present in the
structure is first found, and then this value is multiplied or divided by the value 1E6. This is an
arbitrary value, which can also be modified.

'generate initial properties for gap elements

For Igap = 1 To Ngaps
Imats = FindMatMax(l) : PROPS(Nmats + Igap, 1) = PROPS(Imats, 1) 'E modulus
Imats = FindMatMax(2) : PROPS(Nmats + Igap, 2) = PROPS(Imats, 2) * 1000000 'area
If Ntype = 2 Or Ntype = 3 Then

Imats = FindMatMax(3) : PROPS(Nmats + Igap, 3) = PROPS(Imats, 3) / 1000000 'Jxx
Imats = FindMatMax(4) : PROPS(Nmats + Igap, 4) = PROPS(Imats, 4) / 1000000 'Jyy
Imats = FindMatMax(8) : PROPS(Nmats + Igap, 8) = PROPS(Imats, 8) / 1000000 'Jt0
PROPS(Nmats + Igap, 9) = 0 'Poisson ratio
Imats = Nmats + Igap

PROPS(Imats, 10) = 0.5 * PROPS(Imats, 1) / (1 + PROPS(Imats, 9)) 'G modulus

End If
Next Igap

The subroutine that generates the gap elements is listed below.

Sub GenerateGaps(Filel As StreamWriter)

Dim Inew, Idiml, Idofl As Integer
Dim Deltl1(3) As Single
Dim Lmin, Lmax, Leng2, Lengt, Lgap As Single

'find min, max lengths of elements in order to size the GAPS
Lmin = 900000000000.0# : Lmax = —-90000000000.0#
For Ielem = 1 To Nelem
Leng2 = 0
For Idime = 1 To NDIME
Deltl(Idime) = XYCOO(Idime + 3, Ielem) - XYCOO(Idime, Ielem)
Leng2 = Leng2 + Deltl(Idime) * Deltl(Idime)
Next Idime
Lengt = Math.Sqrt(Leng2)

If Lmin > Lengt Then Lmin
If Lmax < Lengt Then Lmax
Next Ielem
Lgap = Lmax / 10 'gap element length

Lengt
Lengt

'set nodal coordinates of gap elements
PrtString = vbCrLf : PrtString += vbCrLf
PrtString += " GAP ELEMENTS DEFINITION" + vbCrLf

PrtString += vbCrLf

PrtString += " ** A DDED NODAL DATA =*xx*" + vbCrLf
' xx%x WRITE NODAL DATA

PrtString += vbCrLf

PrtString += " NODE X-COORD. Y-COORD. Z-COORD. "
Filel.wWriteLine(PrtString)
Inew = 0

For Ipoin = 1 To Npoin
For Idime = 1 To NDIME
If GAPS(Ipoin, Idime) <> 0 Then
Inew = Inew + 1
For Jdime = 1 To NDIME
CORDS(Npoin + Inew, Jdime) = CORDS(Ipoin, Jdime) - GAPS(Ipoin, Jdime)
* Lgap
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Next Jdime

'next 3 lines needed
Xcoor(Npoin + Inew)
Ycoor(Npoin + Inew)
Zcoor(Npoin + Inew)

for local axes calculation
CORDS(Npoin + Inew, 1)
CORDS(Npoin + Inew, 2)
CORDS(Npoin + Inew, 3)

+

Inew,

PrtString = String.Format("{0,13}", (Npoin + Inew).ToString("####0")) +
For Jdime = 1 To NDIME
PrtString +=  String.Format("{0,15}", CORDS(Npoin
Jdime) .ToString("0.000OE+00"))
Next Jdime
Filel.WriteLine(PrtString)
IJINC(Nelem + Inew, 1) = Ipoin
IJINC(Nelem + Inew, 2) = Npoin + Inew
'next 2 lines needed for local axes calculation
Incl(Nelem + Inew) = IJINC(Nelem + Inew, 1)
Inc2(Nelem + Inew) = IJINC(Nelem + Inew, 2)
Exit For
End If
Next Idime
Next Ipoin
'set restraint codes at new nodes
For Ipoin = Npoin + 1 To Npoin + Ngaps
For Idofn = 1 To NDOFN : IDDOF(Idofn, Ipoin) = 0 : Next Idofn
Next Ipoin
'generate elements
PrtString = vbCrLf
PrtString += " ** ADDED ELEMENTS *%%" + vbCrLf
PrtString += vbCrLf
PrtString += " TYPE ELEMENT NODE I NODE J" '+ vbCrLf

Filel.WritelLine(PrtString)

For Ielem = Nelem + 1 To Nelem + Ngaps
'SET UP INCIDENCES
For Idime = 1 To NDIME
Idiml = Idime + NDIME
XYCO0(Idime, Ielem)
XYC00(Idiml, Ielem)
Next Idime

CORDS(IJINC(Ielem, 1), Idime)
CORDS(IJINC(Ielem, 2), Idime)

'incidences are already set above

Mater(Ielem) = Nmats + Ielem - Nelem

For Idofn = 1 To NDOFN
Idofl = Idofn + NDOFN
'load degrees of freedom at element ends
LMDOF (Idofn, Ielem) = IDDOF(Idofn, IJINC(Ielem, 1))
LMDOF (Idofl, Ielem) = IDDOF(Idofn, IJINC(Ielem, 2))
Next Idofn

'CALCULATE COLUMN HEIGHTS
Call COLHT(Ielem)
PrtString = " GAP "
PrtString +=
PrtString +=
PrtString +=
Filel.WriteLine(PrtString)
Next Ielem
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Call CalculateTmat(Nelem + 1, Nelem + Ngaps) 'calculate transformation T matrix for

Gap elements: Tmat(,,)

'update nodes and elements numbers
OldNpoin = Npoin

OldNelem = Nelem

Npoin += Ngaps

Nelem += Ngaps

End Sub

The iterative process of checking for any unwanted tensile stresses on the gap elements is already
shown in §4, while the actual checking subroutine is presented below.

Sub CheckGaps(ByVal Icase As Integer, ByRef TensionOnEl As Boolean)
Dim Material As Integer

For Ielem = Nelem — Ngaps + 1 To Nelem
Material = Mater(Ielem)
If Ntype = 2 Or Ntype = 3 Then
If Strel(Icase, Ielem, 1) > @ Then

TensionOnEl = True
'reduce stiffness
PROPS(Material, 1) /= 1000 'Young
PROPS(Material, 2) /= 1000 'area
PROPS(Material, 3) /= 1000 'Jxx
PROPS(Material, 4) /= 1000 'Jyy
PROPS(Material, 8) /= 1000 'Jt

'G modulus
PROPS(Material, 10) = 0.5 * PROPS(Material, 1) / (1 + PROPS(Material, 9))
End If
End If
Next Ielem
End Sub
5.1 Validation example 5.1
Let’s consider the structure shown in the following figure: it is the structure modelled with the Sap4
and SismiCad programs, in order to check the results obtained with gaps elements in MdFem. Due
to the symmetry, only one load condition was considered with the control programs. Node 1 has
no restraints, while node 2, 3 have a hinge restraint The adopted units are kN, m respectively for
forces and lengths.
M35
z=3
4 /?} 6 g 4 5 6
M =100 kNm [
o - M35 -
[1] Z > v
¥y
1(0%(” it X : H L
W 2(3,0,0) 3 (6,0,0)
The following table shows the geometric and mechanical characteristics of the elements. Materials
are supposed to be weightless.
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C25/30 concrete - section 0.u4x0.4
A=20.16 m?

J:s = 0.002133 m*

J = 0.002133 m*

J: = 0.00315733 m*

E = 31447161 KN/m?

v =20.1

The check of gap elements in MdFem was performed using the model shown in the following figure:
at nodes 2, 3 a gap element is inserted, acting in the +z direction.

Lc.1:M =+100 kNm
L.c.2:M =-100 kNm

4 [4] 5 [5] 6
’

z
Yy
1 2 3
The comparison of the results is listed below.
SismiCad Sapd MdFem
W, u (m) 0.001896 0.0018548 | 0.0018548
R1, C(kN) 30.40 30.63 30.625
R1s (KN) -30.40 -30.63 -30.625
M35 5 CkNm) 65.028 65.22 65.222
M35, ;5 CkNm) -26.1692 26.65 -26.654

As in the example of §3.3, the results obtained with Sap4 are identical to those of MdFem, and in
any case the results obtained with SismiCad are practically the same.

Despite the simplicity of the structure, with the conservative approach adopted for the
management of the gap elements, 3 iterations were necessary in addition to the initial calculation.
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6 Beams on elastic soil

The soil contribution to the stiffness of a beam element is calculated as indicated in [11]. The soil is
modeled according to the Winkler hypothesis, i.e. with independent springs. This means that the
soil has no cohesion, and that stresses cannot spread outside the loading area.

The stiffness Ky of the springs is defined by the ratio between the contact stress and the
displacement of the point of application of the stress, calculated in the direction of the stress. The
soil springs, by program convention, act in the local 2 direction of the element (see below for the

definition of the local reference system). The soil stiffness is therefore:
K, =2
Uy
In literature K,, is known as modulus or coefficient of subgrade reaction.
The local coordinate system of a beam is automatically defined as follows (see next figure):

- local axis 1 goes from first node i to second node j, along the beam axis;

- local axis 2, orthogonal to axis 1, is automatically set by the program: if the element
direction is not parallel to the global z axis, axis 1 lays on the (1, z) plane; if the element is
parallel to the global z axis, axis 2 is parallel to the global y axis;

- local axis 3 results from the cross (or vector) product of two versors in the direction of the
axes 1 and 2. The right hand rule is respected.

Local Axes Definition

2nd npde 2"?' node

J J

2 41
3\
——

y local coord. system 2 y

local coord. system

X X
global coord. system global coord. system
i i
15t node 15 node
Element not parallel to global z axis Element parallel to global z axis

In reference [11] the contribution of the soil stiffness is calculated for a 2D beam, for which the only
variables are the displacements orthogonal to the beam and the rotations at the ends of the beam
itself. If we extend this contribution to a 3D beam, for which the soil acts only along the local
direction 2, these variables are:

Uz i 93,iru2,j: 93,j

And the contribution of the soil stiffness is:

- 13 11 9 13

35 210 70 420

1 13 1
5% 220t “Tae’
[Ksoil] = wa L 105 413 11
35 210
1,

| symm. Tos V|
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Where: b = width of the beam resting on the soil
L = beam length

The next figure shows a 3D beam element with the variables involved by the soil stiffness.

local coord. system

0 3

The stiffness matrix of a beam is shown below, with the positions affected by the soil contribution

highlighted.

[ug; up;  uz; 61 0y O3 uy; Uy

K, 0 0 0 0 0 Ky; 0
K, O 0 0 K, 0  Kpg
Kis 0 Kys 0O 0 0
Keo O O 0 0
Kes 0 0 0
K66 0 K68
K] = ’ ’
[ L] K77 O
K8,8
symm.

In conclusion, if the soil acts only along the local axis 2, calling K* = K,,,b L, the highlighted

elements become:

126], 13
KZ,Z = 3 +K g
6EJ, .11
Ky = L23 +K mL
126/, 9
AR 70
6Ej, 13
fore = = ag0*
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4E] 1
Keg =—2+K —1°
66— | 105
6E] 13
Keg=—-——"+K —1L
’ L? 420
2B/, 1
Ké;z :'—Z—'—EZB 2
12E], 13
887 I3 35
6E/, 11
Ka1z2 = - 2 210
AE] 1
Kig1s =—+K —17
212 = 105

In the MdFem program, the soil stiffness is added in the Beam3DstiffVaragnolo subroutine listed
below, called after assembling the local stiffness matrix of the beam element.

Sub Addwinkler(ByRef Kmat(,) As Double, Aleng As Double, Imats As Integer)
Dim C3 As Double
C3 = PROPS(Imats, 5) * PROPS(Imats, 11) * Aleng
Kmat(2, 2) += C3 % (13 / 35)
Kmat(2, 6) += C3 * (11 / 210) * Aleng
Kmat(2, 8) += C3 * (9 / 70)
Kmat(2, 12) += C3 %= (-13 / 420) * Aleng
Kmat(6, 6) += C3 * (1 / 105) * Aleng " 2
Kmat(6, 8) += C3 * (13 / 420) * Aleng
Kmat(6, 12) += C3 * (-1 / 140) * Aleng " 2

Kmat(8, 8) += C3 * (13 / 35)
Kmat(8, 12) += C3 % (-11 / 210) * Aleng

Kmat(12, 12) += C3 * (1 / 105) * Aleng " 2

End Sub

After solving the system of equations, which gives the displacements referred to the global
reference system, we still have to calculate the soil stress, which is:

Osoit = Kw Uy
The relationship between the displacements of node i in the global x, y, z directions, and the
displacements of the same node in the local 1, 2, 3 directions is:

[wll = [t] [wlE (6.1)

where: [u;] [uu Uy Us l] are the displacements at node i expressed in local coordinates;

7 =
L
[w]% = [u,“ Uy Uy l] are the displacements at node i expressed in global coordinates;
Hi1x A1y A1z
[t] [a’z,x azy az,z] are the cosines of the angles between local and global axes

a3,x a3,y a3,z

For node j, similar relations apply.
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Since only the displacement in the local 2 direction is of interest, the application of relation (6.1) is
reduced to:

Upi = Oy x Uy + Aoy Uy +ay, Uy

Upj = Qo x Uy j+ Aoy Uyj+ Az, Uy
Below is the listing of the CalculateSoilStress() subroutine that calculates the soil stresses at the
nodes of the elements.

Sub CalculateSoilStress()
'calculate soil stresses for WINK elements, parallel to local 2 axis

Dim Mat, Inl, In2 As Integer

For Icase = 1 To Ncase + NCOMB
For i% = 1 To Nelem

Mat = Mater(i%)
Inl = Incl(i%)
In2 = Inc2(i%)

If PROPS(Mat, 5) * PROPS(Mat, 11) <> 0 Then

'project global displacement at node i in local 2 direction
SoilStress(Icase, Inl)=Tmat(i%, 2, 1)*Displ(Icase, Inl, 1)*PROPS(Mat, 11)
SoilStress(Icase, Inl)+=Tmat(i%, 2, 2)*Displ(Icase, Inl, 2)*PROPS(Mat, 11)
SoilStress(Icase, Inl)+=Tmat(i%, 2, 3)*Displ(Icase, Inl, 3)*PROPS(Mat, 11)

'project global displacement at node j in local 2 direction
SoilStress(Icase, In2)=Tmat(i%, 2, 1)*Displ(Icase, In2, 1)*PROPS(Mat, 11)
SoilStress(Icase, In2)+=Tmat(i%, 2, 2)*Displ(Icase, In2, 2)*PROPS(Mat, 11)
SoilStress(Icase, In2)+=Tmat(i%, 2, 3)*Displ(Icase, In2, 3)*PROPS(Mat, 11)
End If
Next i%
Next Icase

End Sub

6.1 Validation example 6.1

Let’s consider the structure shown in the next figure: this problem is taken from [2], where it was
solved by inserting concentrated springs of appropriate stiffness at the nodes. This may be a
sufficiently approximate approach, and in any case this is a good method to easily check the
goodness of the implementation of the Winkler beam finite element. Unfortunately, in the cited
text there is an error in the calculation of the springs applied to the first and last node.

For this reason, for the validation of the MdFem program, the structure with concentrated springs
was first solved using the values published in [2]. Once the results were checked, the structure was
calculated with the correct spring values, then comparing the results with those obtained by
MdFem with Winkler elements. At each node only u, and 6,, dof are allowed.

The adopted units are kN, m respectively for forces and lengths.
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Fz =-1350 Fz =-2025

M =-108 kNm M =81kNm

1_2%3 12

— 0.0
— 0.2
— 0.4
— 0.7

— an) el o M~ o o an)
o o =t ap] @ N = oo
— ] o =+ ~ W uw L

6.38

x coordinates of the nodes

The following table shows the geometric and mechanical characteristics of the elements. Materials
are supposed to be weightless.

Concrete - section 2.6U4x0.6
A=0.1.584 m?

J33 0.04752 m*

Jas 0.9199872 m*

Jv = 0.162864 m*

E = 21700000 KN/m?

v =0.1

The coefficient of subgrade reaction K,,, has a value of 22000 kN/m?. The spring value K, at node n
is given by the following product:
Ly_q1Lyn
2
b =2.64 m is the width of the concrete section

K,=K,b
where:

L,,_1 is the length of the element to the left of node n
L,,_1 is the length of the element to the right of node n

The following table contains the calculation of the spring values and the values found in [2]. The
first and last values are different because in [2] the entire length of the element has been used
instead of half the length.

Node x—coord. Element Kz (kN/m) Kz (kN/m)
(m) length (m) (correct (Bowles)
value)

1 0 5808.00 11616

2 0.2 0.2 11616.00 11616

3 0.4 0.2 14520.00 14520
4 0.7 0.3 26426.40 26426.41
5 1.31 0.61 48787.20 u8787.2
6 2.38 1.07 62145.60 62145.59
7 3.45 1.07 57499.20 58499.2
8 4.36 0.91 44140.80 44140.8
9 4.97 0.61 24393.60 24393.61
10 5.2 0.23 13358.40 13358.41
11 5.43 0.23 19747.20 19747.2

12 5.88 0.45 27588.00 27588
13 6.38 0.5 14520.00 29040.02
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The first comparisons, between the results published in [2] and those of MdFem, is listed below.
The comparison is made with the displacements and with the bending moments. The soil pressures
are proportional to the displacements and therefore there is no need to control them.

Displacements (m) Bowles MdFem Error (%)
Uz 1 0.01181 0.01179 0.17
U, - 0.01131 0.01129 0.18
Uz, 10 0.00875 0.00875 0
Uz 13 0.00972 0.00972 0
Bending Moments Bowles MdFem Error (%)
CkNm)
M3, ; -83 -80.66 2.8
M3, ; 296 -296.93 0.3
M3,ax 1225.25 1224.4 0.07
M3, ; 195.25 194.42 0.4
M35 ; -1468.75 1468.21 0.1

The results are practically the same, ignoring some strange signs indicated in [2] for the bending
moments.

We then proceed to calculate the same structure with the MdFem program: 1) with the correct
values of the concentrated springs; 2) again with concentrated spring, but dividing the structure
into a greater number of elements; 3) using the Winkler elements presented in this chapter.

Displacements (m) MdFem with MdFem with MdFem with
correct thickened Winkler
spring mesh elements
values

Uy x=o 0.01212 0.01228 0.1233
Uz x=0 2 0.01161 0.01175 0.1179
Uy x=5 2 0.00971 0.00974 0.00975
Uz x=6.38 0.01125 0.01132 0.01134

Bending Moments MdFem with MdFem with MdFem with

(KkNm) correct thickened Winkler

spring mesh elements
values

M3, 2 -93.9 -93.6 -93.9

M3nax -1341.0 -1344.6 -1345.9
M3,2s 5 356.6 356.7 356.7

By dividing the structure into a greater number of elements, closer values are obtained between
the concentrated spring model and the one with Winkler elements. It can be seen that the
displacements increase and tend to the values calculated with the continuous model of the Winkler
element.
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6.2 Validation example 6.2

Another validation example was made with the structure represented in the next figure, using the
SismiCad and MdFem programs, with the (continuous) Winkler elements presented in this chapter.
The adopted units are kN, m, rad respectively for forces, lengths and angles. Materials are supposed
to be weightless.

zZ
y Fz=-100
2 3

X
4 5 6 7 8 9 1

Tlolola o ololel D!

B
To)
|

—0 e

6
7
8

-9

E
—10 O™

X coordinates of the nodes

C25/30 concrete - section 0.6x0.3

A =0.18 m?

Js3 = 0.00135 m*
Jpn = 0.0054 m*

Jit = 0.003699 m"

E = 31447161 kN/m?
v =0.1

The coefficient of subgrade reaction K,,, has a value of 15000 kN/m?,

The SismiCad program proposes a mesh with 6 elements by default. The comparison with MdFem
is conducted with three discretizations: one with only 2 elements, one with 6 elements and one
with 10 elements. In the following table the results are listed, referred to the end points A, C and
the central point B.

SismiCad MdFem MdFem MdFem
(6 elements) (2 elements) (6 elements) (10 elements)
U2 = Uz 7.31E-4 7.2E-4 7.31E-4 7.31E-4
U, s -2.804E-3 -2.758E-3 -2.804E-3 -2.804E-3
M3g 52.91 53.78 52.88 52.90

The results are positive, with an error of 1.6% on the bending moment already with only two
elements. With 6 elements and with 10 elements the results are practically the same.

A check was also done with the elements arranged along the z-axis, to check the correctness of the
implementation: the check gave a positive result.
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7 Program MdFem

The MdFem program has been published in [9] and [10], and adding the subroutines presented in
this paper does not require complex work. For this reason | have chosen not to republish the entire
program. In any case, anyone interested can request the entire program at
info@studioingegneriavaragnolo.com.

The complete program also includes a preprocessor with a user manual and a graphical interface
for the visualization of the model and the results.

Anyone wishing to use the program must remember that numerous checks have been carried out,
but the responsibility always remains of the user as set out below.

IN NO EVENT SHALL PAOLO VARAGNOLO BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE
OF THE SOFTWARE MdFem AND ITS DOCUMENTATION. PAOLO VARAGNOLO SPECIFICALLY
DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE AND
ACCOMPANYING DOCUMENTATION, IS PROVIDED "AS IS". PAOLO VARAGNOLO HAS NO OBLIGATION
TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

8 Final Remarks

With the features presented in this article, the MdFem program reaches a decent level, and is able
to analyze fairly complex structures.

A lot of time has been spent to achieve this result, although of course the MdFem program is still
not comparable to many commercial programs available on the market.

In any case, | think that the practical tips and insights on the techniques adopted, with detailed and
step-by-step explanations of some examples, can be useful to many readers.

| was happy to write this article and the previous ones [9] and [10], so | could put the work done in
order.

3-D Beam Finite Element Programming - A Practical Guide: Part 3 -Advanced features 37



9 Bibliography

[1]
(2]
3]
[4]
(5]
6]
[7]

(8]
[9]

[10]

[11]

[12]

Bathe K. J., Finite element procedures in engineering analysis; Prentice-Hall, New Jersey; (1982).
Bowles J. E., Foundation Analysis and Design; McGraw-Hill International Editions; (1988).
Capurso M., Introduzione al calcolo automatico delle strutture; E.S.A.C. - Roma; (1977).

Cesari F., Introduzione al metodo degli elementi finiti; Pitagora Editrice Bologna; (1982).

Clarke D., Computer e strutture; BE-MA Editrice - Milano; (1979).

Gugliotta, A.: “Elementi Finiti — Parte I”. Otto editore, (2002).

Hinton E., Owen D.R.J., An introduction to finite element computations; Pineridge Press Limited -
Swansea, U.K.; (1979).

Schrefler B., Vitaliani R., Calcolo automatico dei telai spaziali; CLEUP - Padova; (1978).
Varagnolo P., 3-D Beam Finite Element Programming -A Practical Guide: Part 1 — Static Analysis;
ResearchGate, (2021).

Varagnolo P., 3-D Beam Finite Element Programming - A Practical Guide Part 2 — Dynamic Modal
Analysis (Software Included); ResearchGate, (2024).

Vitaliani R., Martini L., Lezioni di calcolo automatico - 1° parte; CUSL NUOVA VITA - Padova;
(1987).

Zienkiewicz O.C., The finite element method - third edition; McGRAW-HILL, U.K.; (1977).

3-D Beam Finite Element Programming - A Practical Guide: Part 3 -Advanced features 38


https://www.researchgate.net/publication/352816965_3-D_Beam_Finite_Element_Programming_-A_Practical_Guide_Part_1?_sg%5B0%5D=zoB-VMKLuCP0ud8-l4U2sN4f4ZFPWzRkOCQc4mmla94iOdEmflortgSJtwE6B-JESGW1KcnoQFqXwpuQ6qf0HIHdq3pmbdLmHlHVIIAo.ulB7kfp3dk1aFXwogOlbHVC0oMAkxR2idxmHAvaRlosLBt3GR2Q3gPvs3XBJTL5cgv4nLcvHARwAm3WWTMETzQ&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6ImhvbWUiLCJwYWdlIjoicHJvZmlsZSIsInByZXZpb3VzUGFnZSI6InByb2ZpbGUiLCJwb3NpdGlvbiI6InBhZ2VDb250ZW50In19

